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Reverse Mathematics
History

Reverse mathematics is a branch of mathematical logic that was

�rst introduced by Harvey Friedman in the 70s.

In the 90s an increasing number of mathematicians became

familiar with it.

Nowadays reverse mathematics is a well-known �eld of

mathematical logic. Many techniques are used in this �eld and

they come from various branches of mathematical logic.



Reverse Mathematics
First order theory

De�nition

A �rst order theory T is a set of sentences in a �rst-order

language L. A sentence is a formula of L without free variables.

Examples:

L = {0, 1,+, <}, ∀n(n + 1 6= 0).

n < m is not a statement.



Reverse Mathematics
Peano Arithmetic

PEANO ARITHMETIC

L = {0,+,×,S ,=}. The axioms are:

1 ∀n¬(S(n) = 0).

2 ∀n∀m(S(n) = S(m)⇒ n = m).

3 ∀n(n + 0 = n).

4 ∀n∀m(n + S(m) = S(n + m)).

5 ∀n(n × 0 = 0).

6 ∀n∀m(n × S(m) = ((n ×m) + n)).

7 The scheme of induction:

ϕ(0) ∧ [∀n(ϕ(n)⇒ ϕ(n + 1))⇒ ∀nϕ(n)].

But this theory is too weak to express most of mathematical

statements!



Reverse Mathematics
Second order arithmetic

L = {=, <,∈,+, ·, 0,S}. We have a two-tiered system of

variables x , y , z , . . . that range over natural numbers and

X ,Y ,Z , . . . that range over sets of natural numbers. The

axioms are:

1 ∀n(n + 1 6= 0).

2 ∀n∀m(S(n) = S(m)⇒ n = m).

3 ∀n(n + 0 = n).

4 ∀n∀m(n + S(m) = S(n + m)).

5 ∀n(n × 0 = 0).

6 ∀n∀m(n × S(m) = ((n ×m) + n)).

7 ∀m¬(m < 0).

8 ∀m∀n(m < S(n)⇔ (m < n ∨m = n).

These ones are called arithmetic axioms.



Reverse Mathematics
Second order arithmetic

Scheme of comprehension:

∃X∀n(n ∈ X ⇔ ϕ(n)).

Scheme of induction:

(ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(S(n)))⇒ ∀nϕ(n)).

Z2 stands for the second order arithemtic.



Reverse Mathematics
Second order arithmetic

Weyl, Hilbert and Bernays were among the �rst to show that in

Z2 it is possible to formalize a considerable part of ordinary

mathematics.

However, how is it possible to speak about real numbers,

continuous functions, partial orders, ordinals, and so on, in a

language in which we only have elements and subsets of N?

We use codes, as we did in ZF. For example, to de�ne R, that
is uncountable, we observe that R is the completion of Q,

which is countable.



Reverse Mathematics
Main question

MAIN QUESTION:

Given a theorem τ of ordinary mathematics, what is the

weakest subsystem of Z2 in which τ is provable?

Which axioms of Z2 are needed to prove τ?

Five answers (BIG FIVE): RCA0,WKL0,ACA0,ATR0,Π
1
1-CA0.



Reverse Mathematics
RCA0

The full comprehension schema is replaced by comprehension

only for ∆0
1 sets.

The induction schema is limited to Σ0
1 formulae.

RCA0 `:
1 Baire category theorem.

2 Intermediate value theorem.

3 Soundness theorem.

4 Every �eld has an algebraic closure.

RCA0 is the base system for reverse mathematics.



Reverse Mathematics
WKL0

WKL0 = RCA0+ �every in�nite tree of 2<N has a path�.

RCA0 `WKL0 ⇔ τ , where τ could be:

1 Heine-Borel theorem: every covering of [0, 1] by a sequence

of open intervals has a �nite subcovering.

2 Every continuous function f : [0, 1]→ R is bounded.

3 Every continuous function f : [0, 1]→ R is uniformly

continuous.

4 Gödel completeness theorem.

5 Every ring has a prime ideal.

6 Brower's �xed point: every uniformly continuous function

ϕ : [0, 1]n → [0, 1]n has a �xed point.



Reverse Mathematics
ACA0

ACA0 = WKL0+ comprehension for arithmetic formulae.

RCA0 ` ACA0 ⇔ τ , where τ could be:

1 Every bounded sequence of real numbers has a least upper

bound.

2 Bolzano-Weirstrass theorem.

3 Every commutative ring has a maximal ideal.

4 Every vector space has a basis.

5 Every abelian group has a trascendence basis.



Reverse Mathematics
ATR0

ATR0 = ACA0 + Σ1
1-separation.

RCA0 ` ATR0 ⇔ τ , where τ could be:

1 Any two countable well orderings are comparable.

2 Lusin's separation theorem: any two disjoint analytic sets

can be separated by a Borel set.

3 Every open subset of NN is determined.



Reverse Mathematics
Π1

1-CA0

Π1
1-CA0 = ATR0+ Π1

1-comprehension.

RCA0 ` Π1
1-CA0 ⇔ τ , where τ could be:

1 Every di�erence of two open sets in the Baire space NN is

determined.

2 Every abelian group is the direct sum of a divisible group

and a reduced group.

3 Every tree has a largest perfect subtree.

4 Every closed subset of R is the union of a countable set

and a perfect set.



Reverse Mathematics

To be honest I must point out two main points that I haven't

speci�ed so far.

1 Not all mathematics! Sets of sets of natural numbers are

not part of second order arithmetic, hence it cannot handle

essentially uncountable mathematics.

2 Some theorems are placed in intermediate subsystems.
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