Curiosando con la matematica Browsing through Mathematics

REVERSE MATHEMATICS

Filippo Cavallari

Università degli Studi di Torino

28 Aprile 2014

Reverse mathematics is a branch of mathematical logic that was first introduced by Harvey Friedman in the 70s.

In the 90s an increasing number of mathematicians became familiar with it.

Nowadays reverse mathematics is a well-known field of mathematical logic. Many techniques are used in this field and they come from various branches of mathematical logic. Reverse Mathematics First order theory

Definition

A first order theory \mathcal{T} is a set of sentences in a first-order language \mathcal{L} . A sentence is a formula of \mathcal{L} without free variables.

Examples:

- $\mathcal{L} = \{0, 1, +, <\}, \forall n(n+1 \neq 0).$
- n < m is not a statement.

Reverse Mathematics Peano Arithmetic

PEANO ARITHMETIC

$$\mathcal{L} = \{0, +, \times, S, =\}. \text{ The axioms are:}$$

$$\forall n \neg (S(n) = 0).$$

$$\forall n \forall m(S(n) = S(m) \Rightarrow n = m).$$

$$\forall n \forall m(n + 0 = n).$$

$$\forall n \forall m(n + S(m) = S(n + m)).$$

$$\forall n (n \times 0 = 0).$$

$$\forall n \forall m(n \times S(m) = ((n \times m) + n)).$$

$$\text{ The scheme of induction:} \\ \varphi(0) \land [\forall n(\varphi(n) \Rightarrow \varphi(n + 1)) \Rightarrow \forall n\varphi(n)].$$

But this theory is too weak to express most of mathematical statements!

Reverse Mathematics Second order arithmetic

 $\mathcal{L} = \{=, <, \in, +, \cdot, 0, S\}$. We have a two-tiered system of variables x, y, z, \ldots that range over natural numbers and X, Y, Z, \ldots that range over sets of natural numbers. The axioms are:

- $\forall n(n+1\neq 0).$
- $2 \quad \forall n \forall m(S(n) = S(m) \Rightarrow n = m).$
- $\exists \forall n(n+0=n).$
- $\mathbf{5} \quad \forall n(n \times 0 = 0).$
- $\forall n \forall m (n \times S(m) = ((n \times m) + n)).$
- $\forall m \neg (m < 0).$
- $\forall m \forall n (m < S(n) \Leftrightarrow (m < n \lor m = n).$

These ones are called arithmetic axioms.

Reverse Mathematics Second order arithmetic

Scheme of comprehension:

$$\exists X \forall n (n \in X \Leftrightarrow \varphi(n)).$$

Scheme of induction:

$$(\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(S(n))) \Rightarrow \forall n\varphi(n)).$$

 Z_2 stands for the second order arithemtic.

Weyl, Hilbert and Bernays were among the first to show that in Z_2 it is possible to formalize a considerable part of ordinary mathematics.

However, how is it possible to speak about real numbers, continuous functions, partial orders, ordinals, and so on, in a language in which we only have elements and subsets of \mathbb{N} ?

We use codes, as we did in ZF. For example, to define \mathbb{R} , that is uncountable, we observe that \mathbb{R} is the completion of \mathbb{Q} , which is countable.

Reverse Mathematics Main question

MAIN QUESTION:

Given a theorem τ of ordinary mathematics, what is the weakest subsystem of Z₂ in which τ is provable?

Which axioms of Z_2 are needed to prove τ ?

Five answers (BIG FIVE): RCA_0 , WKL_0 , ACA_0 , ATR_0 , Π_1^1 - CA_0 .

```
The full comprehension schema is replaced by comprehension only for \Delta_1^0 sets.
The induction schema is limited to \Sigma_1^0 formulae.
```

 $\mathsf{RCA}_0 \vdash:$

- **1** Baire category theorem.
- 2 Intermediate value theorem.
- 3 Soundness theorem.
- 4 Every field has an algebraic closure.

 RCA_0 is the base system for reverse mathematics.

Reverse Mathematics $_{\mathsf{WKL}_0}$

 $\mathsf{WKL}_0 = \mathsf{RCA}_0 +$ "every infinite tree of $2^{<\mathbb{N}}$ has a path".

 $\mathsf{RCA}_0 \vdash \mathsf{WKL}_0 \Leftrightarrow \tau$, where τ could be:

- Heine-Borel theorem: every covering of [0, 1] by a sequence of open intervals has a finite subcovering.
- **2** Every continuous function $f : [0, 1] \rightarrow \mathbb{R}$ is bounded.
- 3 Every continuous function $f:[0,1] \to \mathbb{R}$ is uniformly continuous.
- **4** Gödel completeness theorem.
- 5 Every ring has a prime ideal.
- 6 Brower's fixed point: every uniformly continuous function $\varphi: [0,1]^n \to [0,1]^n$ has a fixed point.

Reverse Mathematics ACA0

 $ACA_0 = WKL_0 + comprehension$ for arithmetic formulae.

 $\mathsf{RCA}_0 \vdash \mathsf{ACA}_0 \Leftrightarrow \tau$, where τ could be:

- Every bounded sequence of real numbers has a least upper bound.
- **2** Bolzano-Weirstrass theorem.
- **3** Every commutative ring has a maximal ideal.
- 4 Every vector space has a basis.
- 5 Every abelian group has a trascendence basis.

Reverse Mathematics ATR₀

$$\mathsf{ATR}_0 = \mathsf{ACA}_0 + \Sigma_1^1$$
-separation.

 $\mathsf{RCA}_0 \vdash \mathsf{ATR}_0 \Leftrightarrow \tau$, where τ could be:

- **1** Any two countable well orderings are comparable.
- 2 Lusin's separation theorem: any two disjoint analytic sets can be separated by a Borel set.
- **3** Every open subset of $\mathbb{N}^{\mathbb{N}}$ is determined.

Reverse Mathematics Π_{1}^{1} -CA₀

 $\Pi_1^1\text{-}\mathsf{CA}_0 = \mathsf{ATR}_0 + \Pi_1^1\text{-}\mathsf{comprehension}.$

 $\mathsf{RCA}_0 \vdash \Pi^1_1 \text{-} \mathsf{CA}_0 \Leftrightarrow \tau$, where τ could be:

- Every difference of two open sets in the Baire space N^N is determined.
- 2 Every abelian group is the direct sum of a divisible group and a reduced group.
- **3** Every tree has a largest perfect subtree.
- 4 Every closed subset of $\mathbb R$ is the union of a countable set and a perfect set.

Reverse Mathematics

To be honest I must point out two main points that I haven't specified so far.

- Not all mathematics! Sets of sets of natural numbers are not part of second order arithmetic, hence it cannot handle essentially uncountable mathematics.
- **2** Some theorems are placed in intermediate subsystems.

Reverse Mathematics References

MAIN REFERENCE

Alberto Marcone (Udine).

MAIN TEXTBOOK

Stephen G. Simpson, Subsystems of second order arithmetic. Cambridge University Press, 2nd ed., 2009.

My personal advice:

Alberto Marcone, Equivalenze tra teoremi: il programma di ricerca della reverse mathematics.

La matematica nella società e nella cultura, Rivista dell'Unione Matematica Italiana 2 (2009), 101-126.

THANKS FOR THE ATTENTION