Mathematics of Data: Algebraic and Topological Methods

Federica Galluzzi

April 28, 2014

Browsing through Mathematics

Types of Data

- images,videos,speech waves, gene expression,financial data
- internet, biological/social networks
- documents and information flows

Problems

- How to capture variations of data distribution?
- How to distinguish significant features from noise?

Algebra and Topology may play a role

- Convert the data set into global topological objects
- Infer high dimensional structure from low dimensional representations

Networks or Point Cloud as undirected graphs

- Point cloud as vertices of a graph
- Connectivity data as edges

The graph ignores higher order features beyond clustering. Think of the graph as a scaffold: complete it to a *simplicial complex*

Simplicial Complexes

- K, a set
- S, a collection of subsets (simplices) in K

such that

- for all $v \in K$, $\{v\} \in S$
- for all $\sigma \in S$ and $\tau \subset \sigma$, then $\tau \in S$
- the sets $\{v\}$ are the vertices of K.
- $\sigma \in S$ is a k simplex if $|\sigma| = k + 1$.
- a subset $\tau \subset \sigma$ is a *face* of σ

A simplicial complex is called *oriented* if it comes with a total order on its vertices. We denote the simplices $\sigma = [v_0, ..., v_n]$.

Standard simplices in \mathbb{R}^3

A simplex may be realized geometrically as the convex hull of k + 1 affinely independent points in \mathbb{R}^d with $d \ge k$.

Example

If K is a tethraedron, triangle faces are the 2-simplices, edges are the 1-simplices, vertices are the 0-simplices.

Figure: Invalid simplicial complex

From clouds to complexes

Figure: Tang Yau Hoon

Clique Complexes

A clique is a subset of vertices such that every two vertices are connected by an edge. The clique complex associated to a graph G has the vertices of G and the faces are the cliques of G.

Figure: Wikipedia

Some Algebraic Topology

The *k*-th chain Group $C_k(K)$

A k-chain is a linear combination of k-simplices in K with integer coefficients. The k-th chain group is the set of all linear combinations

$$\mathcal{C}_k(\mathcal{K}) := \sum_i n_i \sigma_i, \quad n_i \in \mathbb{Z}, \ \sigma_i \, k - simplex \ in \, \mathcal{K}$$

The boundary operator $\partial_k : C_k(K) \to C_{k-1}(K)$

The boundary operator is a homomorphism defined on a k-simplex by:

$$\partial_k([v_0,...,v_{k+1}]) = \sum_i (-1)^i [v_0,...,\widehat{v}_i,...,v_{k+1}]$$

and on a k-chain by linearity.

$$\partial [v_0, v_1] = [v_1] - [v_0]$$

$$\partial [v_0, v_1, v_2] = [v_1, v_2] - [v_0, v_2] + [v_0, v_1]$$

$$\partial [v_0, v_1, v_2, v_3] = [v_1, v_2, v_3] - [v_0, v_2, v_3] \\ + [v_0, v_1, v_3] - [v_0, v_1, v_2]$$

Figure: Hatcher's book

The boundary of a boundary is zero

The operator ∂ connects chain groups

$$... \longrightarrow C_{k+1}(K) \stackrel{\partial_{k+1}}{\longrightarrow} C_k(K) \stackrel{\partial_k}{\longrightarrow} C_{k-1}(K) o ...$$

It has the important property that

$$\partial_k \circ \partial_{k+1} = 0$$

Cycles and Boundaries in $C_k(K)$

A cycle is a chain with zero boundary.

- $Z_k(K) := \ker \partial_k$ the *k*-th cycle group
- $B_k(K) := im \partial_{k+1}$ the *k*-th boundary group

•
$$\partial \circ \partial = \mathbf{0} \Longrightarrow B_k \subseteq Z_k$$

These groups are nested

Figure 4. A chain complex with its internals: chain, cycle, and boundary groups, and their images under the boundary operators.

Boundaries of higher order chains are uninteresting

$$\partial(\partial[a,b,c]) = \partial([b,c]-[a,c]+[a,b]) = c-b-(c-a)+b-a=0$$

Use Homology to identify interesting cycles

The k-th homology group is the quotient group of cycles over boundaries

$$H_k(K) := Z_k(K)/B_k(K)$$

A element $\alpha \in H_k(K)$ is a *homology class*.

Betti numbers

• β_k the *k*-th Betti number : rank of $H_k(K)$

Holes = Interesting cycles

Homology can identify

- clusters (β_0 is the number of connected components)
- holes (1st order holes),
- voids or cavities (2nd order holes, the inside of a balloon)

Figure: Wikipedia

a, *b*, *c*, *d* : 0-simplices; *E*, *F*, *G*, *H*, *I* : 1-simplices; shaded region: 2-simplex. $\beta_0 = 1$. One hole: $\beta_1 = 1$. No voids: $\beta_2 = 0$.

17/27

How can homology track the evolution of a data set?

Figure: D.Horak "Persistence Homology of Complex Networks"

Adding or removing simplices

Filtrations

A *filtration* of a complex *K* is a nested sequence of subcomplexes

$$\emptyset = K^0 \subseteq K^1 \subseteq K^2 \subseteq K^3 \subseteq ... \subseteq K^m = K$$

Birth and death of a homology class

The filtration induces maps on the homology groups

$$\dots \rightarrow H_k(K^{i-1}) \rightarrow H_k(K^i) \rightarrow H_k(K^{i+1}) \rightarrow \dots$$

If a class α is born in $H_k(K^i)$ and dies in $H_k(K^j)$, the *persistence* (lifetime) of α is l = j - i - 1

Persistent homology

The *p*-persistent *k*-th homology group of K^i is

$$H^{i,p}_k := Z^i_k / (B^{i+p}_k \cap Z^i_k)$$

Homology classes of K^i that are still alive in K^{i+p}

Persistent Betti numbers

•
$$\beta_k^{i,p}$$
 the *p*-persistent *k*-th Betti number : rank of $H_k^{i,p}$

Independent homology classes in K^i that are still alive and independent in K^{i+p}

Persistent homology tracks homology classes along the filtration: for which value of p a hole appears, and how long it persists till it is filled in.

Visualize persistent homology: barcodes

Figure: R.Ghrist "The Persistent Topology of Data"

- The horizontal axis is p
- The vertical axis represents ordered homology generators for the H_k
- Each horizontal bar represents the birth death of a separate homology class
- Longer bars correspond to more robust topological structure in the data.
- Shorter bars have short lifetimes and may be considered as topological noise.

Applications

- Separate topological signal from topological noise
- Give important information about robustness of networks against addition or removal of nodes
- Exhibit the highest topological resilience to change in the addition or removal of nodes
- Try to detect hierarchies in a (social, infrastructural, biological) network
- Process motion capture data to distinguish significant features

....

Other Approaches

- Complexes associate to graphs : Cech complex, Rips complex,
- Persistence Complexes : maps fⁱ : Kⁱ → Kⁱ⁺ⁱ instead of inclusions Kⁱ ⊂ Kⁱ⁺¹
- Random networks

Computational aspects

JavaPlex, Java library for persistent homology (CompTop, Stanford) http://code.google.com/p/javaplex

Short Bibliography

- G.Carlsson, A.Zomorodian "Computing Persistence Homology", Discrete Comput. Geom. (2005)
- H. Edelsbrunner, J. Harer "Persistent Homology. A Survey", Contemporary Mathematics (2008)
- F. Cagliari, M. Ferri, P.Pozzi "Size functions from the categorical viewpoint", Acta Appl. Math. (2001).
- P. Frosini, C. Landi "Size theory as a topological tool for computer vision", Pattern Recognition and Image Analysis (1999)
- R. Ghrist "Barcodes: The persistent topology of data". B. AM. Math. Soc. (2008)

THANK YOU!