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The natural numbers N

Basically all mathematics deals or uses numbers and their
properties. The most basic set of numbers is the set of natural
numbers

N = {0, 1, 2, . . .}.

After failed attempts to construct N from simpler set-theoretic
entities, it was finally resolved to define it axiomatically. E.g.
Peano axioms (1889):

P1 ∃ 0 ∈ N.

P2 ∃ injective function σ : N→ N s.t. σ(n) 6= 0,∀n ∈ N.

P3 (Induction principle) If A ⊆ N is s.t. 0 ∈ A and
∀n ∈ A, σ(n) ∈ A then A = N.

The axioms allow to define addition and multiplication in N.
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Z and Q

The natural numbers allow counting but are not enough to solve
even simpe equations as aX + b = 0, a, b ∈ N
For, one introduces the integers

Z =
N× N
∼

, (m, n) ∼ (m′, n′)⇔ m + n′ = n + m′.

Z = {...,−2,−1, 0, 1, 2, ...}, m = (m, 0),−n = (0, n),

and the rational numbers

Q =
Z× (Z \ {0})

∼
(a, b) ∼ (c , d)⇔ ad = bc.

Q = {0,±1,±1

2
,±2,±1

3
, ...} 3 m

n
= (m, n).
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Inadequacy of Q

Q is the smallest field containing N and allows solutions of all
equations

aX + b = 0, a, b ∈ Q

BUT

More complicated algebraic equations cannot be solved in Q.

In particular, Q is not enough for measuring: Pythagoras (VI
Century B.C.) already knew that the ratio between the
lengths of the diagonal and the side of a square is not rational
(i.e.

√
2 /∈ Q)

These problems are (partially) solved with the introduction of the
real numbers R.
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The real numbers

One way to construct R is as follows:

C(Q) = {Cauchy sequences in Q}
= {(qn)n≥0 | ∀ε > 0, |qm − qn| < ε ∀m, n� 0}

and then

R =
C(Q)

∼
con (qn) ∼ (q′n)⇔ lim

n→∞
|qn − q′n| = 0

Properties:

1 Q ↪→ R, q 7→ (qn = q), with dense image.

2 R is a complete ordered field, meaning that every Cauchy
sequence in R converges to an element in R.

3 R is in bijection with the points of the euclidean line.
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Real numbers and equations

the only irreducible polynomials in R[X ] are X 2 + aX + b with
a2 − 4b < 0.

Newton’s method: Let f : R→ R be a differentiable
function. Choose any x0 ∈ R and define a sequence {xn} as

xn+1 = xn −
f (xn)

f ′(xn)
.

Under certain conditions, the sequence {xn} is Cauchy and if
α = limn→∞ xn then

f (α) = 0.
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Analysis of the construction

Note that:

The passage from N to Z and Q is straightforward, motivated
by elementary algebraic considerations, and based on pure
set-theoretic techniques.

To construct R a new kind of structure had to be considered,
namely a metric structure of Q (i.e. a distance).

The distance in Q is defined by means of the absolute value:
d(q, q′) = |q − q′|.

So we may ask: are there other ways to endow Q with a distance?
Or, are there other ways to define an absolute value in Q?

It turns out that there are.
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p-adic absolute value

p ∈ {2, 3, 5, 7, 11, 13, . . .} a prime number. Given Q 3 q 6= 0 write

q = pr a

b
, con MCD(p, ab) = 1 e r ∈ Z.

Definition

The p-adic absolute value of q ∈ Q is

|q|p =

{
p−r if q 6= 0 as above,

0 se q = 0.

NOTE: The powers pn, n > 0, are ”small”: |pn|p = 1
pn → 0.
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p-adic metric

From

1 |q|p = 0⇔ q = 0,

2 |qq′|p = |q|p|q′|p,

3 |q + q′|p ≤ max(|q|p, |q′|p) ≤ |q|p + |q′|p,

follows that

dp : Q×Q→ R≥0 dp(x , y) = |x − y |p

is a metric (p-adic metric).

Remark

p-adic metrics are all inequivalent to each other and the standard
metric.
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the p-adic numbers

Thus we can follow the same process used to construct R:

1 Consider the set Cp(Q) of Cauchy sequences in Q for the
p-adic metric.

2 Declare (qn) ∼ (q′n) iff dp(qn, q
′
n)→ 0.

3 Define the field of p-adic numbers Qp = Cp(Q)/ ∼.

EXAMPLE: (p = 5) Let q1 = 2, q2 = 7, q3 = 57, q4 = 182 and
in general

qn+1 = qn + k5n, with k s.t. q2
n + 2kqn5n ≡ −1 mod 5n+1.

We have

qn+k − qn ≡ 0 mod 5n, q2
n ≡ −1 mod 5n

Thus (qn) is Cauchy and if α = limn→∞ qn then α2 = −1. I.e.

X 2 + 1 = 0 has solution in Q5.
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Some properties of Qp

Qp is very different from R in its basic structure:

If x 6= y ∈ Qp, dp(x , y) ∈ pZ. Thus, the spheres in Qp are
open and closed at the same time. Thus Qp is totally
disconnected.

The ultrametric inequality

dp(x , y) ≤ max{dp(x , z), dp(y , z)}

implies that
1 every point of a sphere can be taken as its center,
2 if two spheres have intersection, one is included in the other.
3 the closed sphere Zp = S(0; 1) is a ring which has as unique

maximal ideal the sphere S(0, 1) = pZp. Moreover

Zp/pZp ' Z/pZ and Qp = Zp[
1

p
].
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description of Zp

The ring of p-adic integers Zp can be described in terms of
congruences as follows: Consider

· · · → Z
pn+1Z

→ Z
pnZ

→ · · · Z
p2Z

→ Z
pZ

.

Let

lim←−

(
Z

pnZ

)
=

(z̄n) ∈
∏
n≥1

Z
pnZ
| z̄n+1 7→ z̄n


If {zn} is a sequence in Z

{zn} è di Cauchy⇔ {z̄n} ∈ lim←−(Z/pnZ).

THUS: Zp = lim←−(Z/pnZ).
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p-adic expansions

Viewing z ∈ Zp as an ”organized set of congruence classes” yields
the following explicit descriptions:

Let A = {0, 1, . . . , p − 1}. Then

Zp =

{ ∞∑
k=0

akpk | ak ∈ A

}
,

Qp =

{ ∞∑
k=−n

akpk | ak ∈ A

}
,

This ”expansion” of a p-adic number as a power series in p, should
be seen as an analogue of the ”expansion in base N” of a real
number (with 1

N in place of p).
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Hensel’s Lemma

Equations in Qp can be solved with an analogue of Newton’s
method:

Theorem (Hensel’s Lemma)

Let P(X ) ∈ Zp[X ] and suppose x ∈ Zp is such that

|P(x)|p < |P ′(x)|2p.

Then there exists ξ ∈ Zp with dp(ξ − x) < |P ′(x)|p such that
P(ξ) = 0.

Proof (idea) : Let x1 = x − P(x)
P′(x) . One sees that

dp(x , x1) < |P ′(x)|p, |P(x1)|p < |P(x)|p and |P ′(x1)|p = |P ′(x)|p.

Iterate: x2 = x1 − P(x1)
P′(x1)

and so on. The sequence x1, x2, x3, . . . is

Cauchy and also |P(xn+1)|p < |P(xn)|p. Thus ξ = lim xn ∈ Zp and
P(ξ) = 0.
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An application

Let p > 2, n ∈ Z not a square, but a square modulo p, i.e.

X 2 ≡ n mod p

has solution X = a ∈ Z (e.g. 32 = 9 ≡ 2 mod 7).

Let P(X ) = X 2 − n ∈ Z[X ] ⊂ Zp[X ]. We have:

P(a) = a2 − n ∈ Zp ⇒ |P(a)|p < 1

P ′(a) = 2a ∈ Z \ Zp ⇒ |P ′(a)|p = 1

Hensel =⇒

∃ξ ∈ Zp t.c. ξ − a ∈ Zpp and ξ2 = n.

(in other words,
√

n ∈ Zp).
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A diagram

The situation is thus the following:

a ∈ Z � � //

����

Zp 3 ξ

vvvv
Z/Zp 3 ā = ξ̄

Thus, we can say that:

Remark

The construction of Zp e Qp provides a characteristic zero
”environment” where to ”lift” solutions of equations in Z/Zp.
This lift is meant in an algebraic sense: solutions in Zp are inverse
images of solutions in Z/Zp under the quotient homomorphism.
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More comparison between R and Qp

In R the equation X 2 + 1 has no solutions. The complex field
C = R(

√
−1) is algebraically closed and [C : R] = 2

Remark

There are no α ∈ Qp such that α2 = p.

Indeed: α2 = p ⇒ |α|2p = 1
p ⇒ |α|p = 1√

p . But the p-adic absolute

value takes values integral powers of p on Qp.

In the same way we see that there is a proper chain of inclusions

Qp ⊂ Qp(p
1
2 ) ⊂ Qp(p

1
4 ) ⊂ · · · ⊂ Qp(p

1
2n ) ⊂ · · ·

In particular,
[Qp : Qp] =∞
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−1) is algebraically closed and [C : R] = 2

Remark

There are no α ∈ Qp such that α2 = p.

Indeed: α2 = p ⇒ |α|2p = 1
p ⇒ |α|p = 1√
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A never ending game?

Theorem (Ostrowski)

A non-trivial absolute value | · | on Q is equivalent either to the
standard absolute value | · |∞ or to a p-adic absolute value | · |p.

Proof (idea) : Fix Z 3 a > 1 and write every b ∈ Z in base a. If
b = cn the triangle inequality yields

|c | ≤ max{1, |a|log c/ log a}.

1 ∃c con |c| > 1⇒ |a| > 1. Then |c |
1

log c = |a|
1

log a and
| · | ∼ | · |∞.

2 ∀c ∈ Z, |c | ≤ 1⇒ J = {a ∈ Z | |a| < 1} is a prime ideal in Z.
So J = Zp for a prime p and | · | ∼ | · |p.
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A problem

Consider a non-degenerate quadratic form

Q(~X ) = Q(X1, . . . ,Xn) =
∑

1≤i≤j≤n
aijXiXj , aij ∈ Q

Problem

Find necessary and sufficient conditions for the existence of
Qn 3 ~q 6= (0, . . . , 0) with Q(~q) = 0.

NOTE: The equation

X 2 − 2Y 2 = 0

has real non-zero solutions (e.g. (
√

2, 1)) but no rational solutions
(because

√
2 /∈ Q). Thus the existence of real solutions is a

necessary, but not sufficient condition for the existence of
rational solutions.
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Hasse principle

Every solution in Qn of an equation

F (X1, . . . ,Xn) = 0

is also a solution in Rn and Qn
p for all p.

Theorem (Hasse principle)

Let Q(~X ) =
∑

1≤i≤j≤n aijXiXj , with aij ∈ Q. The equation

Q(~X ) = 0 admits a non-zero solution in Qn if and only if it admits
non-zero solutions in Rn and in Qn

p for every p.

Proof: The proof is not constructive and not easy. See Part I of
Serre’s Cours d’arithmetique.
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Quaternion algebras

A quaternion algebra over a field K is an algebra of the form

D = K ⊕ Ki ⊕ Kj ⊕ Kij ji = −ij , i2 = a, j2 = b, a, b ∈ K×

e.g. the Hamilton quaternions (K = R, a = b = −1)

Theorem

If K = R or Qp there are only two quaternion algebras up to
isomorphism:

1 D ' M2(K ) (a = b = 1),

2 D ' the unique central division algebra over K of rank 4.
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Quaternion algebras over Q

What about quaternion algebras over Q?

Given D over Q, let D ⊗Qp the algebras over Qp with the same
constants a, b. (Notation: Q∞ = R)

Theorem

Let Σ(D) ⊂ {∞, 2, 3, 5, ...} be the set of primes such that D ⊗Qp

is a division algebra. Then:

1 Σ(M2(Q)) = ∅.
2 Σ(D) is a finite set consisting of an even number of elements.

3 D ' D ′ iff Σ(D) = Σ(D ′).

4 If Σ is finite and even there is one quaternion algebra D over
Q such that Σ(D) = Σ
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Some textbooks:

1 A. M. Robert, A Course in p-adic Analysis, Springer GTM 198

2 A. Frölich, Local Fields, in Algebraic Number Theory,
Academic Press (1967)

3 J. W. S. Cassels, Global Fields, in Algebraic Number Theory,
Academic Press (1967)

4 J.-P. Serre, A Course in Arithmetic. Springer GTM 7

5 M.F. Vigneras, Arithmtique des Algbres de Quaternions, LNM
800, Springer (1980)
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