The *p*-adic numbers: what they are and what they are good for Browsing Through Mathematics

Andrea Mori

Department of Mathematics University of Torino

April 28th, 2014

Basically all mathematics deals or uses **numbers** and their properties. The most basic set of numbers is the set of **natural numbers**

 $\mathbb{N} = \{0, 1, 2, \ldots\}.$

After failed attempts to construct \mathbb{N} from simpler set-theoretic entities, it was finally resolved to define it axiomatically. E.g. **Peano axioms (1889):**

P1 $\exists 0 \in \mathbb{N}$.

P2 \exists injective function $\sigma : \mathbb{N} \to \mathbb{N}$ s.t. $\sigma(n) \neq 0, \forall n \in \mathbb{N}$.

P3 (Induction principle) If $A \subseteq \mathbb{N}$ is s.t. $0 \in A$ and $\forall n \in A, \sigma(n) \in A$ then $A = \mathbb{N}$.

The axioms allow to define **addition** and **multiplication** in \mathbb{N} .

Basically all mathematics deals or uses **numbers** and their properties. The most basic set of numbers is the set of **natural numbers**

$$\mathbb{N} = \{0, 1, 2, \ldots\}.$$

After failed attempts to construct \mathbb{N} from simpler set-theoretic entities, it was finally resolved to define it axiomatically. E.g. **Peano axioms (1889):**

- P1 $\exists 0 \in \mathbb{N}$.
- P2 \exists injective function $\sigma : \mathbb{N} \to \mathbb{N}$ s.t. $\sigma(n) \neq 0, \forall n \in \mathbb{N}$.
- P3 (Induction principle) If $A \subseteq \mathbb{N}$ is s.t. $0 \in A$ and $\forall n \in A, \sigma(n) \in A$ then $A = \mathbb{N}$.

The axioms allow to define **addition** and **multiplication** in \mathbb{N} .

The natural numbers allow **counting** but are not enough to solve even simple equations as aX + b = 0, $a, b \in \mathbb{N}$

For, one introduces the **integers**

$$\mathbb{Z} = \frac{\mathbb{N} \times \mathbb{N}}{\sim}, \quad (m, n) \sim (m', n') \Leftrightarrow m + n' = n + m'.$$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}, \quad m = \overline{(m, 0)}, -n = \overline{(0, n)},$$

and the rational numbers

$$\mathbb{Q} = rac{\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})}{\sim} \quad (a,b) \sim (c,d) \Leftrightarrow ad = bc.$$

$$\mathbb{Q} = \{0, \pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{1}{3}, \ldots\} \ni \frac{m}{n} = \overline{(m, n)}.$$

${\mathbb Z}$ and ${\mathbb Q}$

The natural numbers allow **counting** but are not enough to solve even simple equations as aX + b = 0, $a, b \in \mathbb{N}$ For, one introduces the **integers**

$$\mathbb{Z} = rac{\mathbb{N} \times \mathbb{N}}{\sim}, \quad (m, n) \sim (m', n') \Leftrightarrow m + n' = n + m'.$$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}, \quad m = \overline{(m, 0)}, -n = \overline{(0, n)},$$

and the rational numbers

$$\mathbb{Q} = rac{\mathbb{Z} imes (\mathbb{Z} \setminus \{0\})}{\sim} \quad (a,b) \sim (c,d) \Leftrightarrow ad = bc.$$

$$\mathbb{Q} = \{0, \pm 1, \pm \frac{1}{2}, \pm 2, \pm \frac{1}{3}, \ldots\} \ni \frac{m}{n} = \overline{(m, n)}.$$

$\mathbb Z$ and $\mathbb Q$

The natural numbers allow **counting** but are not enough to solve even simple equations as aX + b = 0, $a, b \in \mathbb{N}$ For, one introduces the **integers**

$$\mathbb{Z} = rac{\mathbb{N} \times \mathbb{N}}{\sim}, \quad (m, n) \sim (m', n') \Leftrightarrow m + n' = n + m'.$$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}, \quad m = \overline{(m, 0)}, -n = \overline{(0, n)},$$

and the rational numbers

$$\mathbb{Q} = rac{\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})}{\sim} \quad (a,b) \sim (c,d) \Leftrightarrow ad = bc.$$

$$\mathbb{Q}=\{0,\pm 1,\pm \frac{1}{2},\pm 2,\pm \frac{1}{3},\ldots\} \ni \frac{m}{n}=\overline{(m,n)}.$$

 $\mathbb Q$ is the smallest field containing $\mathbb N$ and allows solutions of all equations

$$aX + b = 0, \quad a, b \in \mathbb{Q}$$

BUT

 \bullet More complicated algebraic equations cannot be solved in $\mathbb{Q}.$

In particular, Q is not enough for measuring: Pythagoras (VI Century B.C.) already knew that the ratio between the lengths of the diagonal and the side of a square is not rational (i.e. √2 ∉ Q)

These problems are (partially) solved with the introduction of the real numbers \mathbb{R} .

 $\mathbb Q$ is the smallest field containing $\mathbb N$ and allows solutions of all equations

$$aX+b=0, \quad a,b\in \mathbb{Q}$$

BUT

- \bullet More complicated algebraic equations cannot be solved in $\mathbb{Q}.$
- In particular, Q is not enough for measuring: Pythagoras (VI Century B.C.) already knew that the ratio between the lengths of the diagonal and the side of a square is not rational (i.e. √2 ∉ Q)

These problems are (partially) solved with the introduction of the real numbers \mathbb{R} .

One way to construct $\ensuremath{\mathbb{R}}$ is as follows:

 $\begin{aligned} \mathcal{C}(\mathbb{Q}) &= \{ \text{Cauchy sequences in } \mathbb{Q} \} \\ &= \{ (q_n)_{n \geq 0} \mid \forall \epsilon > 0, |q_m - q_n| < \epsilon \; \forall m, n \gg 0 \} \end{aligned}$

and then

$$\mathbb{R} = rac{\mathcal{C}(\mathbb{Q})}{\sim} \quad ext{con } (q_n) \sim (q_n') \Leftrightarrow \lim_{n \to \infty} |q_n - q_n'| = 0$$

Properties:

1 $\mathbb{Q} \hookrightarrow \mathbb{R}, q \mapsto \overline{(q_n = q)}$, with **dense** image.

- R is a complete ordered field, meaning that every Cauchy sequence in R converges to an element in R.
- 0 $\mathbb R$ is in bijection with the points of the euclidean line.

One way to construct $\ensuremath{\mathbb{R}}$ is as follows:

$$\begin{aligned} \mathcal{C}(\mathbb{Q}) &= \{ \text{Cauchy sequences in } \mathbb{Q} \} \\ &= \{ (q_n)_{n \ge 0} \mid \forall \epsilon > 0, |q_m - q_n| < \epsilon \; \forall m, n \gg 0 \} \end{aligned}$$

and then

1

$$\mathbb{R} = rac{\mathcal{C}(\mathbb{Q})}{\sim} \quad ext{con} \ (q_n) \sim (q_n') \Leftrightarrow \lim_{n o \infty} |q_n - q_n'| = 0$$

Properties:

1 $\mathbb{Q} \hookrightarrow \mathbb{R}, q \mapsto \overline{(q_n = q)}$, with **dense** image.

- R is a complete ordered field, meaning that every Cauchy sequence in R converges to an element in R.
- 0 $\mathbb R$ is in bijection with the points of the euclidean line.

One way to construct $\ensuremath{\mathbb{R}}$ is as follows:

$$\begin{array}{lll} \mathcal{C}(\mathbb{Q}) &=& \{ \mathsf{Cauchy sequences in } \mathbb{Q} \} \\ &=& \{ (q_n)_{n \geq 0} \mid \forall \epsilon > 0, |q_m - q_n| < \epsilon \; \forall m, n \gg 0 \} \end{array}$$

and then

1

$$\mathbb{R} = rac{\mathcal{C}(\mathbb{Q})}{\sim} \quad ext{con} \; (q_n) \sim (q_n') \Leftrightarrow \lim_{n o \infty} |q_n - q_n'| = 0$$

Properties:

1
$$\mathbb{Q} \hookrightarrow \mathbb{R}, q \mapsto \overline{(q_n = q)}, \text{ with dense image.}$$

- ② ℝ is a complete ordered field, meaning that every Cauchy sequence in ℝ converges to an element in ℝ.
- ${f 0}\ {\Bbb R}$ is in bijection with the points of the euclidean line.

Real numbers and equations

- the only irreducible polynomials in $\mathbb{R}[X]$ are $X^2 + aX + b$ with $a^2 4b < 0$.
- Newton's method: Let f : ℝ → ℝ be a differentiable function. Choose any x₀ ∈ ℝ and define a sequence {x_n} as

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Under certain conditions, the sequence $\{x_n\}$ is Cauchy and if $\alpha = \lim_{n \to \infty} x_n$ then

$$f(\alpha)=0.$$

Real numbers and equations

- the only irreducible polynomials in $\mathbb{R}[X]$ are $X^2 + aX + b$ with $a^2 4b < 0$.
- Newton's method: Let f : ℝ → ℝ be a differentiable function. Choose any x₀ ∈ ℝ and define a sequence {x_n} as

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Under certain conditions, the sequence $\{x_n\}$ is Cauchy and if $\alpha = \lim_{n \to \infty} x_n$ then

$$f(\alpha) = 0.$$

- The passage from $\mathbb N$ to $\mathbb Z$ and $\mathbb Q$ is straightforward, motivated by elementary algebraic considerations, and based on pure set-theoretic techniques.
- To construct ℝ a new kind of structure had to be considered, namely a metric structure of ℚ (i.e. a distance).
- The distance in \mathbb{Q} is defined by means of the absolute value: d(q, q') = |q - q'|.

So we may ask: are there other ways to endow \mathbb{Q} with a distance? Or, are there other ways to define an absolute value in \mathbb{Q} ?

- The passage from ℕ to ℤ and ℚ is straightforward, motivated by elementary algebraic considerations, and based on pure set-theoretic techniques.
- To construct ℝ a new kind of structure had to be considered, namely a metric structure of ℚ (i.e. a distance).
- The distance in \mathbb{Q} is defined by means of the absolute value: d(q, q') = |q - q'|.

So we may ask: are there other ways to endow \mathbb{Q} with a distance? Or, are there other ways to define an absolute value in \mathbb{Q} ?

- The passage from ℕ to ℤ and ℚ is straightforward, motivated by elementary algebraic considerations, and based on pure set-theoretic techniques.
- To construct ℝ a new kind of structure had to be considered, namely a metric structure of ℚ (i.e. a distance).
- The distance in \mathbb{Q} is defined by means of the absolute value: d(q,q') = |q-q'|.

So we may ask: are there other ways to endow \mathbb{Q} with a distance? Or, are there other ways to define an absolute value in \mathbb{Q} ?

- The passage from N to Z and Q is straightforward, motivated by elementary algebraic considerations, and based on pure set-theoretic techniques.
- To construct ℝ a new kind of structure had to be considered, namely a metric structure of ℚ (i.e. a distance).
- The distance in \mathbb{Q} is defined by means of the absolute value: d(q,q') = |q - q'|.

So we may ask: are there other ways to endow \mathbb{Q} with a distance? Or, are there other ways to define an absolute value in \mathbb{Q} ?

- The passage from N to Z and Q is straightforward, motivated by elementary algebraic considerations, and based on pure set-theoretic techniques.
- To construct ℝ a new kind of structure had to be considered, namely a metric structure of ℚ (i.e. a distance).
- The distance in \mathbb{Q} is defined by means of the absolute value: d(q,q') = |q - q'|.

So we may ask: are there other ways to endow \mathbb{Q} with a distance? Or, are there other ways to define an absolute value in \mathbb{Q} ?

 $p \in \{2, 3, 5, 7, 11, 13, \ldots\}$ a prime number. Given $\mathbb{Q} \ni q \neq 0$ write $q = p^r \frac{a}{b}$, con MCD(p, ab) = 1 e $r \in \mathbb{Z}$.

Definition

The p-adic absolute value of $q \in \mathbb{Q}$ is

$$q|_p = egin{cases} p^{-r} & ext{if } q
eq 0 ext{ as above,} \ 0 & ext{se } q = 0. \end{cases}$$

NOTE: The powers p^n , n > 0, are "small": $|p^n|_p = \frac{1}{p^n} \to 0$.

p-adic metric

From

•
$$|q|_p = 0 \Leftrightarrow q = 0,$$

• $|qq'|_p = |q|_p |q'|_p,$
• $|q + q'|_p \le \max(|q|_p, |q'|_p) \le |q|_p + |q'|_p,$
follows that

$$d_p: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}^{\geq 0} \quad d_p(x, y) = |x - y|_p$$

is a metric (*p*-adic metric).

Remark

p-adic metrics are all inequivalent to each other and the standard metric.

_ ₽ ▶

p-adic metric

From

$$\begin{array}{l} \bullet \quad |q|_{p} = 0 \Leftrightarrow q = 0, \\ \bullet \quad |qq'|_{p} = |q|_{p}|q'|_{p}, \\ \bullet \quad |q + q'|_{p} \leq \max(|q|_{p}, |q'|_{p}) \leq |q|_{p} + |q'|_{p}, \\ follows that \end{array}$$

$$d_{p}: \mathbb{Q} imes \mathbb{Q} o \mathbb{R}^{\geq 0}$$
 $d_{p}(x, y) = |x - y|_{p}$

is a metric (*p*-adic metric).

Remark

p-adic metrics are all inequivalent to each other and the standard metric.

□→ < □→</p>

p-adic metric

From

$$\begin{array}{l} \bullet \quad |q|_{p} = 0 \Leftrightarrow q = 0, \\ \bullet \quad |qq'|_{p} = |q|_{p}|q'|_{p}, \\ \bullet \quad |q + q'|_{p} \leq \max(|q|_{p}, |q'|_{p}) \leq |q|_{p} + |q'|_{p}, \\ \end{array}$$
follows that

$$d_{p}: \mathbb{Q} imes \mathbb{Q} o \mathbb{R}^{\geq 0}$$
 $d_{p}(x, y) = |x - y|_{p}$

is a metric (*p*-adic metric).

Remark

p-adic metrics are all inequivalent to each other and the standard metric.

the *p*-adic numbers

Thus we can follow the same process used to construct \mathbb{R} :

- Consider the set C_p(Q) of Cauchy sequences in Q for the p-adic metric.
- 2 Declare $(q_n) \sim (q'_n)$ iff $d_p(q_n, q'_n) \rightarrow 0$.

3 Define the field of *p*-adic numbers $\mathbb{Q}_p = \mathcal{C}_p(\mathbb{Q})/\sim$. **EXAMPLE:** (p = 5) Let $q_1 = 2$, $q_2 = 7$, $q_3 = 57$, $q_4 = 182$ and p general

$$q_{n+1} = q_n + k5^n$$
, with k s.t. $q_n^2 + 2kq_n5^n \equiv -1 \mod 5^{n+1}$.

We have

$$q_{n+k} - q_n \equiv 0 \mod 5^n$$
, $q_n^2 \equiv -1 \mod 5^n$

Thus (q_n) is Cauchy and if $\alpha = \lim_{n \to \infty} q_n$ then $\alpha^2 = -1$. I.e.

 $X^2 + 1 = 0$ has solution in \mathbb{Q}_5 .

the *p*-adic numbers

Thus we can follow the same process used to construct \mathbb{R} :

- Consider the set C_p(Q) of Cauchy sequences in Q for the p-adic metric.
- 2 Declare $(q_n) \sim (q'_n)$ iff $d_p(q_n, q'_n) \rightarrow 0$.
- **③** Define the field of *p*-adic numbers $\mathbb{Q}_p = \mathcal{C}_p(\mathbb{Q})/\sim$.

EXAMPLE: (p = 5) Let $q_1 = 2$, $q_2 = 7$, $q_3 = 57$, $q_4 = 182$ and in general

$$q_{n+1} = q_n + k5^n$$
, with k s.t. $q_n^2 + 2kq_n5^n \equiv -1 \mod 5^{n+1}$.

We have

$$q_{n+k} - q_n \equiv 0 \mod 5^n, \quad q_n^2 \equiv -1 \mod 5^n$$

Thus (q_n) is Cauchy and if $\alpha = \lim_{n \to \infty} q_n$ then $\alpha^2 = -1$. I.e.

 $X^2 + 1 = 0$ has solution in \mathbb{Q}_5 .

Some properties of \mathbb{Q}_p

 \mathbb{Q}_p is very different from \mathbb{R} in its basic structure:

- If x ≠ y ∈ Q_p, d_p(x, y) ∈ p^Z. Thus, the spheres in Q_p are open and closed at the same time. Thus Q_p is totally disconnected.
- The ultrametric inequality

$$d_p(x, y) \le \max\{d_p(x, z), d_p(y, z)\}$$

implies that

- every point of a sphere can be taken as its center,
- 2 if two spheres have intersection, one is included in the other.
- 3 the closed sphere Z_p = S(0; 1) is a ring which has as unique maximal ideal the sphere S(0, 1) = pZ_p. Moreover

$$\mathbb{Z}_{
ho}/p\mathbb{Z}_{
ho}\simeq \mathbb{Z}/p\mathbb{Z}$$
 and $\mathbb{Q}_{
ho}=\mathbb{Z}_{
ho}[rac{1}{p}].$

<u>Some</u> properties of \mathbb{Q}_{p}

 \mathbb{Q}_p is very different from \mathbb{R} in its basic structure:

- If $x \neq y \in \mathbb{Q}_p$, $d_p(x, y) \in p^{\mathbb{Z}}$. Thus, the spheres in \mathbb{Q}_p are open and closed at the same time. Thus \mathbb{Q}_p is **totally** disconnected.
- The ultrametric inequality

$$d_p(x, y) \le \max\{d_p(x, z), d_p(y, z)\}$$

implies that

- every point of a sphere can be taken as its center,
- If two spheres have intersection, one is included in the other.
- 3 the closed sphere $\mathbb{Z}_p = \overline{S(0;1)}$ is a **ring** which has as **unique maximal ideal** the sphere $S(0,1) = p\mathbb{Z}_p$. Moreover

$$\mathbb{Z}_p/p\mathbb{Z}_p\simeq \mathbb{Z}/p\mathbb{Z}$$
 and $\mathbb{Q}_p=\mathbb{Z}_p[rac{1}{p}].$

The ring of *p*-adic integers \mathbb{Z}_p can be described in terms of congruences as follows: Consider

$$\cdots \to \frac{\mathbb{Z}}{p^{n+1}\mathbb{Z}} \to \frac{\mathbb{Z}}{p^n\mathbb{Z}} \to \cdots \frac{\mathbb{Z}}{p^2\mathbb{Z}} \to \frac{\mathbb{Z}}{p\mathbb{Z}}.$$

Let

$$\varprojlim\left(\frac{\mathbb{Z}}{p^n\mathbb{Z}}\right) = \left\{ (\bar{z}_n) \in \prod_{n \ge 1} \frac{\mathbb{Z}}{p^n\mathbb{Z}} \,|\, \bar{z}_{n+1} \mapsto \bar{z}_n \right\}$$

If $\{z_n\}$ is a sequence in \mathbb{Z}

 $\{z_n\}$ è di Cauchy $\Leftrightarrow \{\overline{z}_n\} \in \varprojlim(\mathbb{Z}/p^n\mathbb{Z}).$

THUS: $\mathbb{Z}_p = \lim_{n \to \infty} (\mathbb{Z}/p^n \mathbb{Z}).$

The ring of *p*-adic integers \mathbb{Z}_p can be described in terms of congruences as follows: Consider

$$\cdots \to \frac{\mathbb{Z}}{p^{n+1}\mathbb{Z}} \to \frac{\mathbb{Z}}{p^n\mathbb{Z}} \to \cdots \frac{\mathbb{Z}}{p^2\mathbb{Z}} \to \frac{\mathbb{Z}}{p\mathbb{Z}}.$$

Let

$$\varprojlim\left(\frac{\mathbb{Z}}{p^n\mathbb{Z}}\right) = \left\{ (\bar{z}_n) \in \prod_{n \ge 1} \frac{\mathbb{Z}}{p^n\mathbb{Z}} \,|\, \bar{z}_{n+1} \mapsto \bar{z}_n \right\}$$

If $\{z_n\}$ is a sequence in \mathbb{Z}

 $\{z_n\}$ è di Cauchy $\Leftrightarrow \{\overline{z}_n\} \in \varprojlim(\mathbb{Z}/p^n\mathbb{Z}).$

THUS: $\mathbb{Z}_p = \varprojlim (\mathbb{Z}/p^n \mathbb{Z}).$

Viewing $z \in \mathbb{Z}_p$ as an "organized set of congruence classes" yields the following explicit descriptions:

Let $A = \{0, 1, ..., p - 1\}$. Then

$$\mathbb{Z}_{p} = \left\{ \sum_{k=0}^{\infty} a_{k} p^{k} \mid a_{k} \in \mathcal{A} \right\},$$
$$\mathbb{Q}_{p} = \left\{ \sum_{k=-n}^{\infty} a_{k} p^{k} \mid a_{k} \in \mathcal{A} \right\},$$

This "expansion" of a *p*-adic number as a power series in *p*, should be seen as an analogue of the "expansion in base *N*" of a real number (with
$$\frac{1}{N}$$
 in place of *p*).

p-adic expansions

Viewing $z \in \mathbb{Z}_p$ as an "organized set of congruence classes" yields the following explicit descriptions:

Let $\mathcal{A} = \{0, 1, \dots, p-1\}$. Then

$$\mathbb{Z}_{p} = \left\{ \sum_{k=0}^{\infty} a_{k} p^{k} \mid a_{k} \in \mathcal{A} \right\},\$$
$$\mathbb{Q}_{p} = \left\{ \sum_{k=-n}^{\infty} a_{k} p^{k} \mid a_{k} \in \mathcal{A} \right\},\$$

This "expansion" of a *p*-adic number as a power series in *p*, should be seen as an analogue of the "expansion in base *N*" of a real number (with
$$\frac{1}{N}$$
 in place of *p*).

Viewing $z \in \mathbb{Z}_p$ as an "organized set of congruence classes" yields the following explicit descriptions:

Let $\mathcal{A} = \{0, 1, \dots, p-1\}.$ Then

$$\mathbb{Z}_{p} = \left\{ \sum_{k=0}^{\infty} a_{k} p^{k} \mid a_{k} \in \mathcal{A} \right\},$$
$$\mathbb{Q}_{p} = \left\{ \sum_{k=-n}^{\infty} a_{k} p^{k} \mid a_{k} \in \mathcal{A} \right\},$$

This "expansion" of a *p*-adic number as a power series in *p*, should be seen as an analogue of the "expansion in base *N*" of a real number (with $\frac{1}{N}$ in place of *p*).

Theorem (Hensel's Lemma)

Let $P(X) \in \mathbb{Z}_p[X]$ and suppose $x \in \mathbb{Z}_p$ is such that

 $|P(x)|_p < |P'(x)|_p^2.$

Then there exists $\xi \in \mathbb{Z}_p$ with $d_p(\xi - x) < |P'(x)|_p$ such that $P(\xi) = 0$.

Proof (idea) : Let $x_1 = x - \frac{P(x)}{P'(x)}$. One sees that $d_p(x, x_1) < |P'(x)|_p$, $|P(x_1)|_p < |P(x)|_p$ and $|P'(x_1)|_p = |P'(x)|_p$. Iterate: $x_2 = x_1 - \frac{P(x_1)}{P'(x_1)}$ and so on. The sequence $x_1, x_2, x_3, ...$ is Cauchy and also $|P(x_{n+1})|_p < |P(x_n)|_p$. Thus $\xi = \lim x_n \in \mathbb{Z}_p$ and $P(\xi) = 0$.

Theorem (Hensel's Lemma)

Let $P(X) \in \mathbb{Z}_p[X]$ and suppose $x \in \mathbb{Z}_p$ is such that

 $|P(x)|_{p} < |P'(x)|_{p}^{2}.$

Then there exists $\xi \in \mathbb{Z}_p$ with $d_p(\xi - x) < |P'(x)|_p$ such that $P(\xi) = 0$.

Proof (idea) : Let $x_1 = x - \frac{P(x)}{P'(x)}$. One sees that $d_p(x, x_1) < |P'(x)|_p$, $|P(x_1)|_p < |P(x)|_p$ and $|P'(x_1)|_p = |P'(x)|_p$. Iterate: $x_2 = x_1 - \frac{P(x_1)}{P'(x_1)}$ and so on. The sequence $x_1, x_2, x_3, ...$ is Cauchy and also $|P(x_{n+1})|_p < |P(x_n)|_p$. Thus $\xi = \lim x_n \in \mathbb{Z}_p$ and $P(\xi) = 0$.

Theorem (Hensel's Lemma)

Let $P(X) \in \mathbb{Z}_p[X]$ and suppose $x \in \mathbb{Z}_p$ is such that

 $|P(x)|_{p} < |P'(x)|_{p}^{2}.$

Then there exists $\xi \in \mathbb{Z}_p$ with $d_p(\xi - x) < |P'(x)|_p$ such that $P(\xi) = 0$.

Proof (idea) : Let $x_1 = x - \frac{P(x)}{P'(x)}$. One sees that $d_p(x, x_1) < |P'(x)|_p$, $|P(x_1)|_p < |P(x)|_p$ and $|P'(x_1)|_p = |P'(x)|_p$. Iterate: $x_2 = x_1 - \frac{P(x_1)}{P'(x_1)}$ and so on. The sequence x_1, x_2, x_3, \ldots is Cauchy and also $|P(x_{n+1})|_p < |P(x_n)|_p$. Thus $\xi = \lim x_n \in \mathbb{Z}_p$ and $P(\xi) = 0$.

Theorem (Hensel's Lemma)

Let $P(X) \in \mathbb{Z}_p[X]$ and suppose $x \in \mathbb{Z}_p$ is such that

 $|P(x)|_{p} < |P'(x)|_{p}^{2}.$

Then there exists $\xi \in \mathbb{Z}_p$ with $d_p(\xi - x) < |P'(x)|_p$ such that $P(\xi) = 0$.

Proof (idea) : Let $x_1 = x - \frac{P(x)}{P'(x)}$. One sees that $d_p(x, x_1) < |P'(x)|_p$, $|P(x_1)|_p < |P(x)|_p$ and $|P'(x_1)|_p = |P'(x)|_p$. Iterate: $x_2 = x_1 - \frac{P(x_1)}{P'(x_1)}$ and so on. The sequence x_1, x_2, x_3, \ldots is Cauchy and also $|P(x_{n+1})|_p < |P(x_n)|_p$. Thus $\xi = \lim x_n \in \mathbb{Z}_p$ and $P(\xi) = 0$.

 $X^2 \equiv n \bmod p$

has solution $X = a \in \mathbb{Z}$ (e.g. $3^2 = 9 \equiv 2 \mod 7$). Let $P(X) = X^2 - n \in \mathbb{Z}[X] \subset \mathbb{Z}_p[X]$. We have:

$$\begin{split} P(a) &= a^2 - n \in \mathbb{Z}p \quad \Rightarrow \quad |P(a)|_p < 1\\ P'(a) &= 2a \in \mathbb{Z} \setminus \mathbb{Z}p \quad \Rightarrow \quad |P'(a)|_p = 1 \end{split}$$

 $\mathsf{Hensel} \Longrightarrow$

$$\exists \xi \in \mathbb{Z}_p \text{ t.c. } \xi - a \in \mathbb{Z}_p p \text{ and } \xi^2 = n.$$

 $X^2 \equiv n \bmod p$

has solution $X = a \in \mathbb{Z}$ (e.g. $3^2 = 9 \equiv 2 \mod 7$). Let $P(X) = X^2 - n \in \mathbb{Z}[X] \subset \mathbb{Z}_p[X]$. We have:

$$P(a) = a^2 - n \in \mathbb{Z}p \implies |P(a)|_p < 1$$

 $P'(a) = 2a \in \mathbb{Z} \setminus \mathbb{Z}p \implies |P'(a)|_p = 1$

 $\mathsf{Hensel} \Longrightarrow$

$$\exists \xi \in \mathbb{Z}_p \text{ t.c. } \xi - a \in \mathbb{Z}_p p \text{ and } \xi^2 = n.$$

 $X^2 \equiv n \bmod p$

has solution $X = a \in \mathbb{Z}$ (e.g. $3^2 = 9 \equiv 2 \mod 7$). Let $P(X) = X^2 - n \in \mathbb{Z}[X] \subset \mathbb{Z}_p[X]$. We have:

$$P(a) = a^2 - n \in \mathbb{Z}p \Rightarrow |P(a)|_p < 1$$

 $P'(a) = 2a \in \mathbb{Z} \setminus \mathbb{Z}p \Rightarrow |P'(a)|_p = 1$

 $\mathsf{Hensel} \Longrightarrow$

$$\exists \xi \in \mathbb{Z}_p \text{ t.c. } \xi - a \in \mathbb{Z}_p p \text{ and } \xi^2 = n.$$

 $X^2 \equiv n \bmod p$

has solution $X = a \in \mathbb{Z}$ (e.g. $3^2 = 9 \equiv 2 \mod 7$). Let $P(X) = X^2 - n \in \mathbb{Z}[X] \subset \mathbb{Z}_p[X]$. We have:

$$P(a) = a^2 - n \in \mathbb{Z}p \Rightarrow |P(a)|_p < 1$$

 $P'(a) = 2a \in \mathbb{Z} \setminus \mathbb{Z}p \Rightarrow |P'(a)|_p = 1$

 $\mathsf{Hensel} \Longrightarrow$

$$\exists \xi \in \mathbb{Z}_p \text{ t.c. } \xi - a \in \mathbb{Z}_p p \text{ and } \xi^2 = n.$$

The situation is thus the following:

Thus, we can say that:

Remark

The construction of \mathbb{Z}_p e \mathbb{Q}_p provides a characteristic zero "environment" where to **"lift"** solutions of equations in $\mathbb{Z}/\mathbb{Z}p$. This lift is meant in an algebraic sense: solutions in \mathbb{Z}_p are **inverse images** of solutions in $\mathbb{Z}/\mathbb{Z}p$ under the **quotient homomorphism**. The situation is thus the following:

Thus, we can say that:

Remark

The construction of $\mathbb{Z}_p \in \mathbb{Q}_p$ provides a characteristic zero "environment" where to "lift" solutions of equations in $\mathbb{Z}/\mathbb{Z}p$. This lift is meant in an algebraic sense: solutions in \mathbb{Z}_p are inverse images of solutions in $\mathbb{Z}/\mathbb{Z}p$ under the quotient homomorphism.

More comparison between \mathbb{R} and \mathbb{Q}_p

In \mathbb{R} the equation $X^2 + 1$ has no solutions. The complex field $\mathbb{C} = \mathbb{R}(\sqrt{-1})$ is algebraically closed and $[\mathbb{C} : \mathbb{R}] = 2$

Remark

There are no $\alpha \in \mathbb{Q}_p$ such that $\alpha^2 = p$.

Indeed: $\alpha^2 = p \Rightarrow |\alpha|_p^2 = \frac{1}{p} \Rightarrow |\alpha|_p = \frac{1}{\sqrt{p}}$. But the *p*-adic absolute value takes values integral powers of *p* on \mathbb{Q}_p .

In the same way we see that there is a proper chain of inclusions

$$\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(p^{rac{1}{2}}) \subset \mathbb{Q}_{p}(p^{rac{1}{4}}) \subset \cdots \subset \mathbb{Q}_{p}(p^{rac{1}{2n}}) \subset \cdots$$

In particular,

$$[\overline{\mathbb{Q}}_p : \mathbb{Q}_p] = \infty$$

More comparison between \mathbb{R} and \mathbb{Q}_p

In \mathbb{R} the equation $X^2 + 1$ has no solutions. The complex field $\mathbb{C} = \mathbb{R}(\sqrt{-1})$ is algebraically closed and $[\mathbb{C} : \mathbb{R}] = 2$

Remark

There are no $\alpha \in \mathbb{Q}_p$ such that $\alpha^2 = p$.

Indeed: $\alpha^2 = p \Rightarrow |\alpha|_p^2 = \frac{1}{p} \Rightarrow |\alpha|_p = \frac{1}{\sqrt{p}}$. But the *p*-adic absolute value takes values integral powers of *p* on \mathbb{Q}_p .

In the same way we see that there is a proper chain of inclusions

$$\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(p^{rac{1}{2}}) \subset \mathbb{Q}_{p}(p^{rac{1}{4}}) \subset \cdots \subset \mathbb{Q}_{p}(p^{rac{1}{2n}}) \subset \cdots$$

In particular,

$$[\overline{\mathbb{Q}}_p : \mathbb{Q}_p] = \infty$$

More comparison between \mathbb{R} and \mathbb{Q}_{p_1}

In \mathbb{R} the equation $X^2 + 1$ has no solutions. The complex field $\mathbb{C} = \mathbb{R}(\sqrt{-1})$ is algebraically closed and $[\mathbb{C} : \mathbb{R}] = 2$

Remark

There are no $\alpha \in \mathbb{Q}_p$ such that $\alpha^2 = p$.

Indeed: $\alpha^2 = p \Rightarrow |\alpha|_p^2 = \frac{1}{p} \Rightarrow |\alpha|_p = \frac{1}{\sqrt{p}}$. But the *p*-adic absolute value takes values integral powers of *p* on \mathbb{Q}_p .

In the same way we see that there is a proper chain of inclusions

$$\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(p^{rac{1}{2}}) \subset \mathbb{Q}_{p}(p^{rac{1}{4}}) \subset \cdots \subset \mathbb{Q}_{p}(p^{rac{1}{2n}}) \subset \cdots$$

In particular,

$$[\overline{\mathbb{Q}}_{p}:\mathbb{Q}_{p}]=\infty$$

Theorem (Ostrowski)

A non-trivial absolute value $|\cdot|$ on \mathbb{Q} is equivalent either to the standard absolute value $|\cdot|_{\infty}$ or to a p-adic absolute value $|\cdot|_{p}$.

Proof (idea) : Fix $\mathbb{Z} \ni a > 1$ and write every $b \in \mathbb{Z}$ in base *a*. If $b = c^n$ the triangle inequality yields

 $|c| \leq \max\{1, |a|^{\log c/\log a}\}.$

- $\exists c \text{ con } |c| > 1 \Rightarrow |a| > 1. \text{ Then } |c|^{\frac{1}{\log c}} = |a|^{\frac{1}{\log a}} \text{ and } |\cdot| \sim |\cdot|_{\infty}.$
- ② $\forall c \in \mathbb{Z}, |c| \le 1 \Rightarrow J = \{a \in \mathbb{Z} \mid |a| < 1\}$ is a prime ideal in \mathbb{Z} . So $J = \mathbb{Z}p$ for a prime p and $|\cdot| \sim |\cdot|_p$.

Theorem (Ostrowski)

A non-trivial absolute value $|\cdot|$ on \mathbb{Q} is equivalent either to the standard absolute value $|\cdot|_{\infty}$ or to a p-adic absolute value $|\cdot|_{p}$.

Proof (idea) : Fix $\mathbb{Z} \ni a > 1$ and write every $b \in \mathbb{Z}$ in base *a*. If $b = c^n$ the triangle inequality yields

 $|c| \leq \max\{1, |a|^{\log c/\log a}\}.$

- $\exists c \text{ con } |c| > 1 \Rightarrow |a| > 1. \text{ Then } |c|^{\frac{1}{\log c}} = |a|^{\frac{1}{\log a}} \text{ and } |\cdot| \sim |\cdot|_{\infty}.$
- ∀c ∈ Z, |c| ≤ 1 ⇒ J = {a ∈ Z | |a| < 1} is a prime ideal in Z. So J = Zp for a prime p and | · | ~ | · |_p.

Theorem (Ostrowski)

A non-trivial absolute value $|\cdot|$ on \mathbb{Q} is equivalent either to the standard absolute value $|\cdot|_{\infty}$ or to a p-adic absolute value $|\cdot|_{p}$.

Proof (idea) : Fix $\mathbb{Z} \ni a > 1$ and write every $b \in \mathbb{Z}$ in base *a*. If $b = c^n$ the triangle inequality yields

$$|c| \leq \max\{1, |a|^{\log c/\log a}\}.$$

A problem

Consider a non-degenerate quadratic form

$$Q(ec{X}) = Q(X_1, \dots, X_n) = \sum_{1 \leq i \leq j \leq n} \mathsf{a}_{ij} X_i X_j, \quad \mathsf{a}_{ij} \in \mathbb{Q}$$

Problem

Find necessary and sufficient conditions for the existence of $\mathbb{Q}^n \ni \vec{q} \neq (0, ..., 0)$ with $Q(\vec{q}) = 0$.

NOTE: The equation

$$X^2 - 2Y^2 = 0$$

has real non-zero solutions (e.g. $(\sqrt{2}, 1)$) but no rational solutions (because $\sqrt{2} \notin \mathbb{Q}$). Thus the existence of real solutions is a **necessary, but not sufficient** condition for the existence of rational solutions.

A problem

Consider a non-degenerate quadratic form

$$Q(\vec{X}) = Q(X_1, \ldots, X_n) = \sum_{1 \le i \le j \le n} a_{ij} X_i X_j, \quad a_{ij} \in \mathbb{Q}$$

Problem

Find necessary and sufficient conditions for the existence of $\mathbb{Q}^n \ni \vec{q} \neq (0, ..., 0)$ with $Q(\vec{q}) = 0$.

NOTE: The equation

$$X^2 - 2Y^2 = 0$$

has real non-zero solutions (e.g. $(\sqrt{2}, 1)$) but no rational solutions (because $\sqrt{2} \notin \mathbb{Q}$). Thus the existence of real solutions is a **necessary, but not sufficient** condition for the existence of rational solutions.

A problem

Consider a non-degenerate quadratic form

$$Q(\vec{X}) = Q(X_1, \ldots, X_n) = \sum_{1 \le i \le j \le n} a_{ij} X_i X_j, \quad a_{ij} \in \mathbb{Q}$$

Problem

Find necessary and sufficient conditions for the existence of $\mathbb{Q}^n \ni \vec{q} \neq (0, ..., 0)$ with $Q(\vec{q}) = 0$.

NOTE: The equation

$$X^2 - 2Y^2 = 0$$

has real non-zero solutions (e.g. $(\sqrt{2}, 1)$) but no rational solutions (because $\sqrt{2} \notin \mathbb{Q}$). Thus the existence of real solutions is a **necessary, but not sufficient** condition for the existence of rational solutions.

Every solution in \mathbb{Q}^n of an equation

 $F(X_1,\ldots,X_n)=0$

is also a solution in \mathbb{R}^n and \mathbb{Q}_p^n for all p.

Theorem (Hasse principle)

Let $Q(\vec{X}) = \sum_{1 \le i \le j \le n} a_{ij} X_i X_j$, with $a_{ij} \in \mathbb{Q}$. The equation $Q(\vec{X}) = 0$ admits a non-zero solution in \mathbb{Q}^n if and only if it admits non-zero solutions in \mathbb{R}^n and in \mathbb{Q}_p^n for every p.

Proof: The proof is not constructive and not easy. See Part I of Serre's *Cours d'arithmetique*.

Every solution in \mathbb{Q}^n of an equation

 $F(X_1,\ldots,X_n)=0$

is also a solution in \mathbb{R}^n and \mathbb{Q}_p^n for all p.

Theorem (Hasse principle)

Let $Q(\vec{X}) = \sum_{1 \le i \le j \le n} a_{ij} X_i X_j$, with $a_{ij} \in \mathbb{Q}$. The equation $Q(\vec{X}) = 0$ admits a non-zero solution in \mathbb{Q}^n if and only if it admits non-zero solutions in \mathbb{R}^n and in \mathbb{Q}_p^n for every p.

Proof: The proof is not constructive and not easy. See Part I of Serre's *Cours d'arithmetique*.

Every solution in \mathbb{Q}^n of an equation

 $F(X_1,\ldots,X_n)=0$

is also a solution in \mathbb{R}^n and \mathbb{Q}_p^n for all p.

Theorem (Hasse principle)

Let $Q(\vec{X}) = \sum_{1 \le i \le j \le n} a_{ij} X_i X_j$, with $a_{ij} \in \mathbb{Q}$. The equation $Q(\vec{X}) = 0$ admits a non-zero solution in \mathbb{Q}^n if and only if it admits non-zero solutions in \mathbb{R}^n and in \mathbb{Q}_p^n for every p.

Proof: The proof is not constructive and not easy. See Part I of Serre's *Cours d'arithmetique*.

A quaternion algebra over a field K is an algebra of the form

$$D={\sf K}\oplus{\sf K}i\oplus{\sf K}j\oplus{\sf K}ij$$
 $ji=-ij,i^2={\sf a},j^2={\sf b},$ ${\sf a},{\sf b}\in{\sf K}^ imes$

e.g. the **Hamilton quaternions** ($K = \mathbb{R}$, a = b = -1)

Theorem

If $K = \mathbb{R}$ or \mathbb{Q}_p there are only two quaternion algebras up to isomorphism:

•
$$D \simeq M_2(K)$$
 ($a = b = 1$),

2) $D \simeq$ the unique central division algebra over K of rank 4.

A quaternion algebra over a field K is an algebra of the form

$$D = K \oplus Ki \oplus Kj \oplus Kij$$
 $ji = -ij, i^2 = a, j^2 = b, a, b \in K^{\times}$

e.g. the Hamilton quaternions $(K = \mathbb{R}, a = b = -1)$

Theorem

If $K = \mathbb{R}$ or \mathbb{Q}_p there are only two quaternion algebras up to isomorphism:

1
$$D \simeq M_2(K)$$
 ($a = b = 1$),

2 $D \simeq$ the unique central division algebra over K of rank 4.

What about quaternion algebras over \mathbb{Q} ?

Given D over \mathbb{Q} , let $D \otimes \mathbb{Q}_p$ the algebras over \mathbb{Q}_p with the same constants a, b. (Notation: $\mathbb{Q}_{\infty} = \mathbb{R}$)

Theorem

Let $\Sigma(D) \subset \{\infty, 2, 3, 5, ...\}$ be the set of primes such that $D \otimes \mathbb{Q}_p$ is a division algebra. Then:

- $(M_2(\mathbb{Q})) = \emptyset.$
- 2) $\Sigma(D)$ is a finite set consisting of an even number of elements.
- $D \simeq D' \text{ iff } \Sigma(D) = \Sigma(D').$
- If Σ is finite and even there is one quaternion algebra D over \mathbb{Q} such that $\Sigma(D) = \Sigma$

What about quaternion algebras over \mathbb{Q} ?

Given D over \mathbb{Q} , let $D \otimes \mathbb{Q}_p$ the algebras over \mathbb{Q}_p with the same constants a, b. (Notation: $\mathbb{Q}_{\infty} = \mathbb{R}$)

Theorem

Let $\Sigma(D) \subset \{\infty, 2, 3, 5, ...\}$ be the set of primes such that $D \otimes \mathbb{Q}_p$ is a division algebra. Then:

- ② Σ(D) is a finite set consisting of an even number of elements.
- $D \simeq D' \text{ iff } \Sigma(D) = \Sigma(D').$
- If Σ is finite and even there is one quaternion algebra D over \mathbb{Q} such that $\Sigma(D) = \Sigma$

What about quaternion algebras over \mathbb{Q} ?

Given D over \mathbb{Q} , let $D \otimes \mathbb{Q}_p$ the algebras over \mathbb{Q}_p with the same constants a, b. (Notation: $\mathbb{Q}_{\infty} = \mathbb{R}$)

Theorem

Let $\Sigma(D) \subset \{\infty, 2, 3, 5, ...\}$ be the set of primes such that $D \otimes \mathbb{Q}_p$ is a division algebra. Then:

- **2** $\Sigma(D)$ is a finite set consisting of an even number of elements.

$$D \simeq D' \text{ iff } \Sigma(D) = \Sigma(D').$$

• If Σ is finite and even there is one quaternion algebra D over \mathbb{Q} such that $\Sigma(D) = \Sigma$

Some textbooks:

- **1** A. M. Robert, A Course in p-adic Analysis, Springer GTM 198
- A. Frölich, Local Fields, in Algebraic Number Theory, Academic Press (1967)
- J. W. S. Cassels, *Global Fields*, in Algebraic Number Theory, Academic Press (1967)
- J.-P. Serre, A Course in Arithmetic. Springer GTM 7
- M.F. Vigneras, Arithmtique des Algbres de Quaternions, LNM 800, Springer (1980)

$\mathbb{E} \, \mathbb{N} \, \mathbb{D}$