Joint Distributions and Copulas: Ideas and Applications

April 28,2014 1 / 1

Sac

・ロト ・回ト ・ヨト

Stochastic models

- Forecast of future events is one of the oldest human dreams;
- The ancient Greeks used signs to predict the future
- Astronomical mathematical models are used for years to predict the motion of the stars
- Other mathematical models allow predictions in different branches of science

イロト イポト イヨト イ

Stochastic models

- Forecast of future events is one of the oldest human dreams;
- The ancient Greeks used signs to predict the future
- Astronomical mathematical models are used for years to predict the motion of the stars
- Other mathematical models allow predictions in different branches of science

Remark

Many phenomena are not deterministic: they are subject to random evolution. However they show some regularities and previsions are still possible. Of course these previsions cannot be deterministic!

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stochastic models

Remark

Two random variables are characterized by their joint ditribution: the observation of one of the two r.v. is a *scientific* sign to argue values of the other (in a probabilistic framework)!

Sar

・ロト ・日下・ ・ ヨト・

Single variables and random vectors... dependences

Single random variables exhibit regularities: mean value, variability, distribution. We can predict their value in advance when we know their distribution

Random Vectors

• The knowledge of one component may change our previsions on the other component;

イロト イポト イヨト イ

Single variables and random vectors... dependences

Single random variables exhibit regularities: mean value, variability, distribution. We can predict their value in advance when we know their distribution

Random Vectors

- The knowledge of one component may change our previsions on the other component;
- Joint tail event may become more probable than tail events of a single component (extreme downside events may occur simoultaneously: Chernobyl accident; global financial crisis of 2008-2009).

500

• • • • • • • • • • • •

Models and Random Variables

Phenomenon:

- Waiting time at the bus stop
- Weight of 7 years old children
- Intertime between two eruptions
- Value of an option on July 25

•

These quantities are random but they exhibit specific random regularities.

Their model is a random variable whose law captures their random regularities.

500

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

One Dimensional Random Variables

Random Variables are described through their cumulative distribution **One dimensional case**:

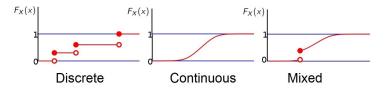
$$F_X(x) = P(X \le x)$$

Properties

- The probability that X lies in the semi-closed interval (a, b], where a < b is $P(a < X \le b) = F_X(b) F_X(a)$
- \bigcirc Cumulative Distribution Function F_X is non-decreasing
- Cumulative Distribution Function F_X is right-continuous, which makes it a cadlag function;
- $Im_{x\to -\infty} F(x) = 0, Im_{x\to +\infty} F(x) = 1.$

イロト 不得下 イヨト イヨト

One Dimensional Random Variables



0

Remark

Every function with these four properties is a CDF: a random variable can be defined such that the function is the cumulative distribution function of that random variable.

Sar

・ロト ・回ト ・ヨト ・

Cumulative Distributions/Probability Densities

Continuos Random Variables admit Probability Density Function $f_X(x)$

Properties

• $f_X(x) \ge 0$

^{\bigcirc} Cumulative Distribution Function F_X is non-decreasing

Remark

It is easy to determine new Probability Density Functions Distributions

Remark

It is easy to determine new Cumulative Distributions

<ロト <四ト < 三ト < 三ト</p>

More Complex Phenomena

Phenomenon:

- Waiting time and time interval of my arrival at the bus stop;
- Weight and Height of 7 years old children;
- Intertime between two eruptions and lenght in time of the eruption;
- Value of an option on July 25 and its value on June 30;

•

These quantities are random, they exhibit specific random regularities.

Remark

These quanties are related: the knowledge of one of them improves our knowledge of the other.

500

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two Dimensional Random Variables

Random Variables are described through their cumulative distribution Two dimensional case:

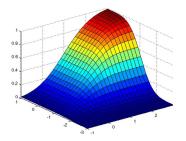
$$F_{X,Y}(x,y) = P(X \leq x, Y \leq y)$$

Properties

Sac

イロト イロト イヨト イヨ

Bivariate Cumulative Distributions



Remark

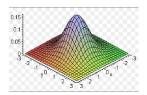
Every function with these four properties is a bivariate CDF: a random variable can be defined such that the function is the cumulative distribution function of that random variable.

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Bivariate Distributions

When the random variable is continuos we can introduce its probability density function. Bivariate distributions are known in avery limited number of instances:

- Bivariate Normal distribution;
- Bivariate Student Distribution;
- Multinomial Distribution;



Remark It is not easy to determine bivariate cumulative distributions

Dependent Random Variables

- Joint distribution captures dependences between random variables but its shape is influenced by the marginal behaviour of each component
- Dependence can be captured through specific indexes:
 - Covariance

$$cov(X,Y) = E$$

Correlation Coefficient

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E\left[(X - \mu_X)(Y - \mu_y)\right]}{\sigma_X \sigma_Y}$$

• Kendall τ index

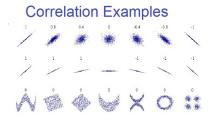
 $\tau_{X,Y} = P\left[(X_1 - X_2) \left(Y_1 - Y_2 \right) > 0 \right] - P\left[(X_1 - X_2) \left(Y_1 - Y_2 \right) < 0 \right]$ where (X_1, Y_1) and (X_2, Y_2) are i.i.d. random variables

Mutual Information

$$I(X,Y) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} f_{X,Y}(x,y) \log \frac{f_{X,Y}(x,y)}{f_X(x)f_Y(y)} dy$$

イロト イポト イヨト イヨト

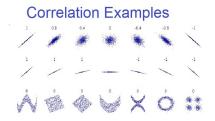
Different Indexes - Different Detected Features

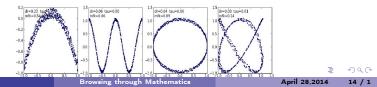


Sar

▲ 同 ▶ → ▲ 三

Different Indexes - Different Detected Features





Index versus Joint Distribution

Remark

- Indexes summarize the joint behavior of two random variables but they lose an important part of the information. each index has its advantages and its shortcomings;
- the knowledge of the joint distribution gives more complete information on the random variables but it merges joint and marginal behaviors.

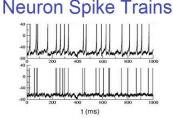
500

A D > A B > A B > A

Index versus Joint Distribution

Remark

- Indexes summarize the joint behavior of two random variables but they lose an important part of the information. each index has its advantages and its shortcomings;
- the knowledge of the joint distribution gives more complete information on the random variables but it merges joint and marginal behaviors.



Simultaneous spikes reaveal a dependence between the neurons or they are due to the chance?

Copulas

Idea

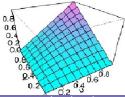
Consider the three values:

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

$$P_X(x) = P(X \le x)$$

$$F_Y(y) = P(Y \le y)$$

Each of them belongs to the interval (0,1). Plot these value in a cube of unitary side



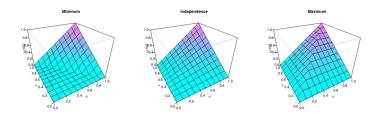
Copulas

Definition

A two-dimensional copula is a function $C:[0,1]^2 \rightarrow [0,1]$ with the following properties:

- 1. C(u; 0) = C(0; v) = 0 and C(u; 1) = u, C(1; v) = v for every $u, v \in [0; 1]$;
- 2. C is 2-increasing, i.e. for every $u_1, u_2, v_1, v_2 \in [0;1]$ such that $u_1 \leq u_2, v_1 \leq v_2,$

$$C(u_1, v_1) + C(u_2, v_2) - C(u_1, v_2) - C(u_2, v_1) \ge 0$$



Sklar's Theorem

Theorem

Let F_1 and F_2 be two univariate distributions. It comes that $C(F_1(x_1), F_2(x_2))$ defines a bivariate probability distribution with margins F_1 and F_2 .

Theorem

Let $F_{1,2}$ be a two-dimensional distribution function with margins F_1 and F_2 . Then $F_{1,2}$ has a copula representation:

$$F_{1,2}(x_1, x_2) = C(F_1(x_1), F_2(x_2))$$

The copula C is unique if the margins are continuous.

A D > A B > A B > A

Copulas

Remark

Let $U = F_X(x)$, $V = F_Y(y)$. The random variables U and V are uniform. Proof $P(U \le u) = P(F_X(x) \le u) = P(X \le F_X^{-1}(u)) = F_X(F_X^{-1}(u)) = u, 0 \le u \le 1$

SOC

・ロト ・日下・ ・ ヨト・

Copulas

Remark

Let $U = F_X(x)$, $V = F_Y(y)$. The random variables U and V are uniform. Proof $P(U \le u) = P(F_X(x) \le u) = P(X \le F_X^{-1}(u)) = F_X(F_X^{-1}(u)) = u, 0 \le u \le 1$

Remark

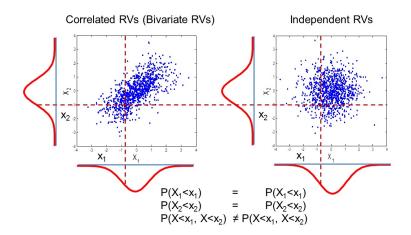
Copulas can be read as the Joint Cumulative Distribution of couples of Uniform Random Variables: $C(u, v) = P(U \le u, V \le v)$

The same Copula corresponds to different Joint Distributions. These Joint Distribuions are obtained computing the copula with different Marginals.

nan

イロト 不得下 イヨト イヨト

Same Marginals but different Joint Distribution



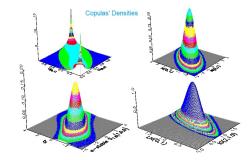
Remark

Same Copula but different Marginals: different Joint Distribution. We can construct new joint distributions!

()

Browsing through Mathematics

Some Copula Families have Densities

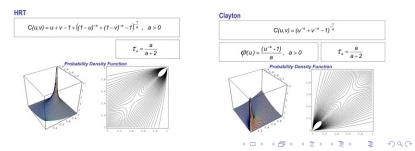


SAC

・ロト ・日子・ ・ 田子・ ・

Examples of Copulas

			Gumbel	
name	bivariate copula $C_{ heta}(u,v)$	parameter θ	$C(u,v) = \exp\left(-\left[(-\ln u)^{o} + (-\ln v)^{o}\right]^{\frac{1}{2}}\right)$	
Clayton	$(\max \{u^{-\theta} + v^{-\theta} - 1; 0\})^{-1/\theta}$	$\theta \in [-1,\infty) \backslash \{0\}$		
Ali-Mikhail-Haq	$\frac{uv}{1-\theta(1-u)(1-v)}$	$ heta \in [-1,1)$	$ alpha(u) = (-\ln u)^a, a \ge 1 $	$T_a = 1 - 1/a$
Gumbel	$\exp\left(-\left((-\log(u))^{\theta} + (-\log(v))^{\theta}\right)^{1/\theta}\right)$	$\theta \in [1,\infty)$	Probability Density Fund	tion
Frank	$-\frac{1}{\theta} \log \left(1 + \frac{(\exp(-\theta u) - 1)(\exp(-\theta v) - 1)}{\exp(-\theta) - 1}\right)$	$\theta \in \mathbb{R} \backslash \{0\}$		
Joe	$1 - ((1 - u)^{\theta} + (1 - v)^{\theta} - (1 - u)^{\theta}(1 - v)^{\theta})^{1/\theta}$	$\theta \in [1,\infty)$		
ndependence			0.2 0.4 0	



April 28,2014 22 / 1

Important Features of Copulas

Theorem

Let X and Y be continuos random variables with Copula $C_{X,Y}$ If α and β are strictly increasing on RanX and RanY respectively, then $C_{\alpha(X),\beta(Y)} = C_{X,Y}$. Thus $C_{X,Y}$ is invariant under strictly increasing transformations of X and Y

500

A D > A B > A B > A

Important Features of Copulas

Theorem

Let X and Y be continuos random variables with Copula $C_{X,Y}$ If α and β are strictly increasing on RanX and RanY respectively, then $C_{\alpha(X),\beta(Y)} = C_{X,Y}$. Thus $C_{X,Y}$ is invariant under strictly increasing transformations of X and Y

Theorem

Let X and Y be continuos random variables with Copula $C_{X,Y}$ Let α and β be strictly monotone on RanX and RanY respectively.

- If α is strictly increasing and β is strictly decreasing, then $C_{\alpha(X),\beta(Y)}u, v) = u C_{X,Y}(u, 1 v)$
- If α is strictly decreasing and β is strictly increasing, then $C_{\alpha(X),\beta(Y)}u, v) = v - C_{X,Y}(1-u, v)$
- If α and β are both strictly decreasing, then $C_{\alpha(X),\beta(Y)}u, v) = u + v - 1 + C_{X,Y}(1 - u, 1 - v)$

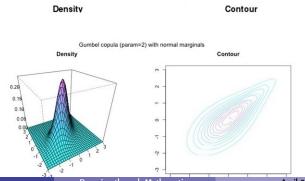
500

A D F A R F A R F A R

New Joint Distributions

Idea

- Select a Copula having the dependence feature of interest (there are many families of Copulas, each depending from parameters that may change their shape)
- ² Apply Marginals of interest to get the new Joint Ditribution



Empirical Copulas

- Consider the sample (Xⁱ, Yⁱ) i = 1, ..., n from a vector (X, Y) with continuous marginals.
- In the corresponding observations for the copula are:

$$(U^{i}, V^{i}) = (F_{X}(X^{i}).F_{Y}(Y^{i})), i = 1, ..., n$$

• The Marginal Distributions $F_X(x)$ and $F_Y(y)$ are unknown: we substitute them with the empirical Distribution Functions:

$$F_X^n(x) = \frac{1}{n} \sum_{i=1}^n 1(X^i \le x)$$

$$F_Y^n(y) = \frac{1}{n} \sum_{i=1}^n 1(Y^i \le x)$$

then the observations of the copula become

$$\left(\widetilde{U}^{i},\widetilde{V}^{i}\right)=\left(F_{X}^{n}\left(X^{i}
ight).F_{Y}^{n}\left(Y^{i}
ight)
ight),i=1,...,n$$

• The corresponding empirical Copula is defined as:

$$C^{n}(u, v) = \frac{1}{n} \sum_{i=1}^{n} 1\left(\widetilde{U}^{i} \le u, \widetilde{V}^{i} \le v\right)$$
Require the Mathematic
And 28 2014

Applications

Some subjects modeled through copulas

- Foreign exchange distributions: joint behavior of euro-dollar ...
- Mineral resource estimation: joint presence of specific minerals
- Reliability problems: joint crash of mechnical parts
- Actuary: incidence of two individuals die and corresponding annual insurance premium
- Neuroscience: joint behaviour of two neurons in a network
- Epidemiology: joint evolution of illness

500

Further topics on copulas

- Extension to higher dimensions
- Simulation of Copulas
- Copulas for Stochastic Processes
- New Classes of Copulas

•

Sac

イロト イポト イヨト イ

Thank you!

Browsing through Mathematics

590

イロト イロト イヨト イヨト