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Stochastic models

Forecast of future events is one of the oldest human dreams;
The ancient Greeks used signs to predict the future
Astronomical mathematical models are used for years to predict the motion
of the stars
Other mathematical models allow predictions in different branches of science

Remark
Many phenomena are not deterministic: they are subject to random evolution.
However they show some regularities and previsions are still possible.
Of course these previsions cannot be deterministic!
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Stochastic models

Remark
Two random variables are characterized by their joint ditribution: the observation
of one of the two r.v. is a scientific sign to argue values of the other (in a
probabilistic framework)!
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Single variables and random vectors... dependences

Single random variables exhibit regularities: mean value, variability, distribution.
We can predict their value in advance when we know their distribution

Random Vectors
The knowledge of one component may change our previsions on the other
component;

Joint tail event may become more probable than tail events of a single
component (extreme downside events may occur simoultaneously: Chernobyl
accident; global financial crisis of 2008-2009).
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Models and Random Variables

Phenomenon:
Waiting time at the bus stop
Weight of 7 years old children
Intertime between two eruptions
Value of an option on July 25
....

These quantities are random but they exhibit specific random regularities.

Their model is a random variable whose law captures their random
regularities.
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One Dimensional Random Variables

Random Variables are described through their cumulative distribution
One dimensional case:

FX (x) = P(X ≤ x)

Properties
1 The probability that X lies in the semi-closed interval (a, b], where a < b is

P(a < X ≤ b) = FX (b)− FX (a)
2 Cumulative Distribution Function FX is non-decreasing
3 Cumulative Distribution Function FX is right-continuous, which makes it a

cadlag function;
4 limx→−∞ F (x) = 0, limx→+∞ F (x) = 1.
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One Dimensional Random Variables

5

Remark
Every function with these four properties is a CDF: a random variable can be
defined such that the function is the cumulative distribution function of that
random variable.
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Cumulative Distributions/Probability Densities

Continuos Random Variables admit Probability Density Function fX (x)

Properties
1 fX (x) ≥ 0
2 Cumulative Distribution Function FX is non-decreasing
3
∫ +∞
−∞ fX (x) dx = 1

Remark
It is easy to determine new Probability Density Functions Distributions

Remark
It is easy to determine new Cumulative Distributions
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More Complex Phenomena

Phenomenon:
Waiting time and time interval of my arrival at the bus stop;
Weight and Height of 7 years old children;
Intertime between two eruptions and lenght in time of the eruption;
Value of an option on July 25 and its value on June 30;
....

These quantities are random, they exhibit specific random regularities.

Remark
These quanties are related: the knowledge of one of them improves our knowledge
of the other.
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Two Dimensional Random Variables
Random Variables are described through their cumulative distribution
Two dimensional case:

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

Properties
1 FX ,Y (x , y) is 2− increasing, i.e.

VH (B) = FX ,Y (x2, y2)− FX ,Y (x2, y1)− FX ,Y (x1, y2) + FX ,Y (x1, y1) ≥ 0

where B = (x1, x2]× (y1, y2];
2 Right-continuous for each of its variables;
3 0 ≤ FX ,Y (x , y) ≤ 1;
4 limx→−∞ FX ,Y (x , y) = 0, limy→−∞ FX ,Y (x , y) = 0;

limx→∞ FX ,Y (x , y) = FY (y) ; limy→∞ FX ,Y (x , y) = FX (x) ;
limx→∞

y→∞
FX ,Y (x , y) = 1.
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Bivariate Cumulative Distributions

Remark
Every function with these four properties is a bivariate CDF: a random variable
can be defined such that the function is the cumulative distribution function of
that random variable.
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Bivariate Distributions
When the random variable is continuos we can introduce its probability density
function. Bivariate distributions are known in avery limited number of instances:

Bivariate Normal distribution;
Bivariate Student Distribution;
Multinomial Distribution;

Remark
It is not easy to determine bivariate cumulative distributions
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Dependent Random Variables

Joint distribution captures dependences between random variables but its
shape is influenced by the marginal behaviour of each component
Dependence can be captured through specific indexes:

Covariance
cov (X ,Y ) = E

Correlation Coefficient

ρX ,Y =
cov (X ,Y )

σXσY
=

E [(X − µX ) (Y − µy )]

σXσY

Kendall τ index
τX ,Y = P [(X1 − X2) (Y1 − Y2) > 0]− P [(X1 − X2) (Y1 − Y2) < 0]
where (X1,Y1) and (X2,Y2) are i.i.d. random variables
Mutual Information

I (X ,Y ) =

∫ ∞
−∞

dx
∫ ∞
−∞

fX ,Y (x , y) log
fX ,Y (x , y)
fX (x)fY (y)

dy
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Different Indexes - Different Detected Features
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Index versus Joint Distribution
Remark

Indexes summarize the joint behavior of two random variables but they lose
an important part of the information. each index has its advantages and its
shortcomings;
the knowledge of the joint distribution gives more complete information on
the random variables but it merges joint and marginal behaviors.
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Copulas
Idea
Consider the three values:

1 FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)
2 FX (x) = P(X ≤ x)
3 FY (y) = P(Y ≤ y)

Each of them belongs to the interval (0, 1). Plot these value in a cube of unitary
side
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Copulas
Definition
A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with the following
properties:
1. C (u; 0) = C (0; v) = 0 and C (u; 1) = u,C (1; v) = v for every u, v ∈ [0; 1];
2. C is 2-increasing, i.e. for every u1, u2, v1, v2 ∈ [0; 1] such that

u1 ≤ u2, v1 ≤ v2,

C (u1, v1) + C (u2, v2)− C (u1, v2)− C (u2, v1) ≥ 0
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Sklar’s Theorem

Theorem
Let F1 and F2 be two univariate distributions. It comes that C (F1(x1),F2(x2))
defines a bivariate probability distribution with margins F1 and F2.

Theorem
Let F1,2 be a two-dimensional distribution function with margins F1 and F2. Then
F1,2 has a copula representation:

F1,2(x1, x2) = C (F1(x1),F2(x2))

The copula C is unique if the margins are continuous.
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Copulas

Remark
Let U = FX (x),V = FY (y). The random variables U and V are uniform.
Proof
P(U ≤ u) = P(FX (x) ≤ u) = P(X ≤ F−1

X (u)) = FX (F−1
X (u)) = u, 0 ≤ u ≤ 1

Remark
Copulas can be read as the Joint Cumulative Distribution of couples of Uniform
Random Variables: C (u, v) = P(U ≤ u,V ≤ v)
The same Copula corresponds to different Joint Distributions. These Joint
Distribuions are obtained computing the copula with different Marginals.
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Same Marginals but different Joint Distribution

Remark
Same Copula but different Marginals: different Joint Distribution. We can
construct new joint distributions!
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Some Copula Families have Densities
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Examples of Copulas
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Important Features of Copulas

Theorem
Let X and Y be continuos random variables with Copula CX ,Y If α and β are
strictly increasing on RanX and RanY respectively, then Cα(X ),β(Y ) = CX ,Y . Thus
CX ,Y is invariant under strictly increasing transformations of X and Y

Theorem
Let X and Y be continuos random variables with Copula CX ,Y Let α and β be
strictly monotone on RanX and RanY respectively.

If α is strictly increasing and β is strictly decreasing, then
Cα(X ),β(Y )u, v) = u − CX ,Y (u, 1− v)
If α is strictly decreasing and β is strictly increasing, then
Cα(X ),β(Y )u, v) = v − CX ,Y (1− u, v)
If α and β are both strictly decreasing, then
Cα(X ),β(Y )u, v) = u + v − 1+ CX ,Y (1− u, 1− v)
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New Joint Distributions
Idea

1 Select a Copula having the dependence feature of interest (there are many
families of Copulas, each depending from parameters that may change their
shape)

2 Apply Marginals of interest to get the new Joint Ditribution
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Empirical Copulas
1 Consider the sample

(
X i ,Y i

)
i = 1, ..., n from a vector (X ,Y ) with

continuous marginals.
2 The corresponding observations for the copula are:(

U i ,V i) = (FX
(
X i) .FY

(
Y i)) , i = 1, ..., n

3 The Marginal Distributions FX (x) and FY (y) are unknown: we substitute
them with the empirical Distribution Functions:

F n
X (x) =

1
n

n∑
i=1

1
(
X i ≤ x

)
F n

Y (y) =
1
n

n∑
i=1

1
(
Y i ≤ x

)
then the observations of the copula become(

Ũ i , Ṽ i
)
=
(
F n

X
(
X i) .F n

Y
(
Y i)) , i = 1, ..., n

4 The corresponding empirical Copula is defined as:

Cn (u, v) =
1
n

n∑
i=1

1
(
Ũ i ≤ u, Ṽ i ≤ v

)
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Applications

Some subjects modeled through copulas
Foreign exchange distributions: joint behavior of euro-dollar ...
Mineral resource estimation: joint presence of specific minerals
Reliability problems:joint crash of mechnical parts
Actuary: incidence of two individuals die and corresponding annual insurance
premium
Neuroscience: joint behaviour of two neurons in a network
Epidemiology: joint evolution of illness
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Further topics on copulas

Extension to higher dimensions
Simulation of Copulas
Copulas for Stochastic Processes
New Classes of Copulas
....

() Browsing through Mathematics April 28,2014 27 / 1



Thank you!

() Browsing through Mathematics April 28,2014 28 / 1


