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1 The equations of Celestial Mechanics

From the mathematical point of view, the motion of a systems of mass point particles is governed
by a system of differential equations in Newtonian form. Let us denote by xi(t) the position of the
i-th particle in the space, the acceleration of this particle is given by the derivative in time of the
velocity v(t) = ẋi(t), and, finally, by the second derivative of the position x(t) with respect to the
time variable a(t) = ẍi(t):

miẍi︸︷︷︸
mass × acceleration

= Fi︸︷︷︸
total force

, i = 1, . . . , n

The motion of the planets and the other celestial bodies is governed by Newton’s law of universal
gravitation, which says that the gravitational force exerted on one particle by another one is directed
along the vector joining the two and it intensity is proportional to the inverse of the square of their
distance and the product of the masses.

Consequently, the total force acting on one particle is the sum of all the attraction forces exerted
by the others

Fi =
∑
j 6=i

Fij =
∑
j 6=i

mimj
xj − xi
‖xj − xi‖

, i = 1, . . . , n



2 The two body problem


m1ẍ1 = Gm1m2

x2 − x1

‖x2 − x1‖3
,

m2ẍ2 = Gm2m1
x1 − x2

‖x1 − x2‖3

We notice that, when summing the two equations, the right hand side vanishes:

m1ẍ1 + m2ẍ2 = 0

this is the center of mass conservation law. It says that the barycenter moves as there were no
forces acting on it, and therefore it undergoes a uniform rectilinear motion.

Thanks to this conservation law, the system of two differential equations reduces to that of
the motion of one unique body subject to an attractive central force, whose intensity is always
proportional to the inverse square of the distance to the center of attraction (which remains at rest).



3 Central force: Kepler’s laws

Newton deduced the inverse square law starting from the three Kepler’s laws of the planets motion:

the planet moves on an elliptic orbit, the
Sun occupies one of the foci .

The planet-Sun ray sweeps equal areas in
equal times.

The square of the planet’s revolution pe-
riods are proportional to the cube of the
major semiaxis of their orbit.

Let us notice that the force is infinite at the attraction center. A long standing question is whether
one can extend the motion after a collision and under which rules.Tullio Levi-Civita (1873-1941)
proposed a space-time transformation which regularizes binary collisions of the three body problem.

The Levi-Civta regularization transforms the one-center problem into an harmonic oscillator!



4 The solar system

The solar system counts many celestial bodies. As the masses of the planets are much smaller than
that of the Sun, in a first approximation, we can neglect the mutual attraction forces between the
planets; then, each planet will move independently of the others:

Within this approximation, we can see the problem as a perturbation of a system of harmonic
oscillators

The theory of perturbations.



5 The three body problem


m1ẍ1 = Gm1m2

x2 − x1

‖x2 − x1‖3
+ Gm1m3

x3 − x1

‖x3 − x1‖3

m2ẍ2 = Gm2m1
x1 − x2

‖x1 − x2‖3
+ Gm2m3

x3 − x2

‖x3 − x2‖3

m3ẍ3 = Gm3m1
x1 − x3

‖x1 − x3‖3
+ Gm3m2

x2 − x3

‖x2 − x3‖3

where mi are the (positive) masses and xi(t), i = 1, 2, 3 are three dimensional vectors, depending
on the time t. As we have already seen, the two body problem can be solved by the use of Levi–Civita
transformations. It transforms into a harmonic oscillator: the two body problem is integrable.

On the other hand, the three body problem can not be solved and can not be seen, in its full
generality, as a perturbation of a simple integrable problem. A key to catch this complexity rests in
the study of some relatively simple solutions, which repeats their motions after a certain time: the
periodic orbits.



6 Orbits of the N-body problem

The system of differential equations of the N -body problem is as follows:

miẍi = G

N∑
j 6=i
j=1

mimj
xj − xi
‖xj − xi‖3

i = 1, . . . , N (∗)

A solutions, or trajectory, or orbit of the system is a vector valued function (x1(t), . . . , xN(t)) of
twice differentiable functions which verify (∗) at each time t ∈ (a, b). To be meaningful, we have to
require xi(t) 6= xj(t) for every t ∈ (a, b). This requirement prevents collisions among the bodies.

Concerning the time behavior, a trajetory can be

periodic, if there exists T > 0 such that xi(t + T ) = xi(t) for every t ∈ R and i = 1; . . . , N .
Esempio: xi(t) = cos t.

quasi-periodic, if there are functions Yi(ξ1, . . . , ξk), periodic in each variable ξi such that xi(t) =
Yi(t, t, . . . , t), for every i. Example: xi(t) = cos t + cos

√
2t; here Yi(t1, t2) = cos t1 + cos

√
2t2.

almost-periodic, if, for every ε > 0, there exists τ ∈ R such that, for every t and i, ‖xi(t) −
xi(t + τ )‖ < ε. Example,

∑+∞
n=1 2−n cos(t/n).



7 Periodic orbits

The mathematician who first understood the role of periodic orbits in the comprehension of the full
dynamics of the N -body problem was the french Henri Poincaré (1854-1912):

“D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour
ainsi dire, la seule brèche par où nous puissons essayer de pénétrer dans une place jusqu’ici
réputée inabordable...”.

According with Poincaré, periodic trajectories are dense in the phase p,ane:

“...voici un fait que je n’ai pu démontrer rigoureusement, mais qui me parait pourtant très
vraisemblable. Étant données des équations de la forme définie dans1 le n. 13 et une solution
particulière quelconque de ces équations, one peut toujours trouver une solution périodique
(dont la période peut, il est vrai, être très longue), telle que la différence entre les deux
solutions soit aussi petite qu’on le veut, pendant un temps aussi long qu’on le veut.”

Even today, this statement has not found a rigorous proof and remains the Poincaré periodic
points conjecture. Since the times of Poincaré, it has became part of the mathematical way of
thinking that periodic orbits, beside being interesting by their own, may capture other trajectories
for long times.

The idea is that one could travel through the phase space by following (shadowing) a concatenation
of periodic orbits. One could jump from one periodic orbit to another as buses.

Problem: how to find enough periodic solutions to capture the complexity of the system.

1La formula n. 13 menzionata da Poincaré è l’equazione di Hamilton.



8 Homographic motions and centrac configurations

The simplest periodic solutions are associated with central configurations; their main feature is that
they keep a constant shape (up to rotations and dialations) which rotates and expands and shrinks
in time.

As the shape remains unchanged, these trajectories are called homographic. In such particu-
lar motions, each body moves under the effect of one single center of attraction, located in the
barycenter, hence describing an ellipse (or a parabola, or a hyperbole).

A central configuration has the property that the force resulting on a one body is proportional to
the vector joining it to the barycenter. In the planar case they are equilibria in a rotating frame.



9 Lagrangian points. The restricted three body problem

In the circular restricted three-body problem, it is assumed that there are two major bodies moving
on a circle (sometimes a ellipse) of the two-body problem, while the third, much smaller, moves
under the action of the two major ones. In a reference frame moving with the two larger bodies, in
the circular case, we find is a problem with two centers of attraction and centripetal force. There
are five equilibrium positions, which were identified as stationary points of the effective potential by
J.L. Lagrange (1736-1813).



10 More periodic trajectories

There are several ways to find periodic orbits. One possibility, which has been widely explored in
the past, is to start with a simpler problem, whose periodic solutions are well known, and then
perturbing it by the introduction of a new body, having a very small mass, or being very faraway
from the previous. This falls again in the theory of perturbations.

In recent years, many new periodic orbits orbits have been discovered, using the symmetries (in
space and time) and the least action principle.

In 2000, two mathematicians (one French and the other American), Alain Chenciner and Richard
Montgomery used the least action principle (Lagrange) with symmetries to find a surprising periodic
orbit for the three bodies:



11 Symmetries of the eight

The simplest way to define the symmetry group which gives rise to the eight is the following. As
usual,

x(t) = (x1(t), x2(t), x3(t)) ∈ R6

denote the positions of the three bodies having all the same mass.
The group is generated by the following two space-time reflections: : the first is

x1(−t) = −x3(t) , x2(−t) = −x2(t) , x3(−t) = −x1(t) .

Notice that, at time t = 0 il the second body is at the origin while the first and third are opposite
to the origin (collinear configuration). The second symmetry is similar, bur with exchanged roles:

x1(1− t) = −x2(t) , x2(1− t) = −x1(t) , x3(1− t) = −x3(t)

Now, at time t = 1 il the third body is at the origin while the first and second are opposite to the
origin (collinear configuration).



12 The minimal action principle appled to the periodic N–body problem

Settings: n point particles with masses m1, m2, . . .mn and positions x1, x2, . . . , xn ∈ Rd, with
d ≥ 2.

Homogeneous (Newton) potential of degree −α < 0 on the configuration space X : U(x) '∑
i<j

mimj

|xi − xj|α
.

On collisions (xi = xj for some i 6= j), the potential U = +∞.

T -periodic orbits: solutions of the Newton equations (such that ∀t : x(t + T ) = x(t) ∈ X ).

miẍi =
∂U

∂xi
.

Lagrangian: L(x, ẋ) = L = K + U =
∑
i

1

2
mi|ẋi|2 +

∑
i<j

mimj

|xi − xj|α
.

Action functional: A(x) =

∫ T

0

L(x(t), ẋ(t))dt.

Minimize A(x) on the class of paths joining any pair of symmetric configurations.



13 Coreographies

http://www.maths.manchester.ac.uk/~jm/Choreographies/


14 Braid Groups



15 Spatial orbits
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16 Simmetries with any bodies

Tetrahedron Cube Octahedron

Prism Dodecahedron



17 Platonic solids

Tetrahedron Cube Octahedron

Icosahedron Dodecahedron



18 Collisions
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20 Singular systems

We consider systems of interacting bodies of the form

miẍi =
∂U

∂xi
(t, x), i = 1, . . . , n

where the forces ∂U
∂xi

are undefined on a singular set ∆.

Example: the set of collisions between two or more particles in the n–body problem:

U(x) =
∑
i<j

mimj

|xi − xj|α

∆ =
⋃
i 6=j

{(x1, . . . , xn) : xi = xj}

Such singularities play a fundamental role in the phase portrait and strongly influence the global
orbit structure, as they can be held responsible, among others, of the presence of chaotic motions
and of motions becoming unbounded in a finite time (Diacu, Devaney, Gerver, Gutzwiller, Mather,
Saari, Simò, Xia). Morevore, singularities are intimately linked to the variational structure of
periodic trajectories and to their action spectrum.



21 Key points in the analysis of the impact of the bounded singularities in the
n–body problem

the asymptotic analysis along a single collision trajectory (total or partial); this analysis goes
back, in the classical case, to the works by Sundman, Wintner and, in more recent years by
Diacu, Sperling, Pollard, Saari, Diacu and other authors;

blowing–up the singularity by a suitable change of coordinates (named after McGehee) and
replacing it by an invariant boundary –the collision manifold– where the flow can be extended
in a smooth manner;

it turns out that, in many interesting applications, the flow on the collision manifold has a
simple structure: it is a gradient–like, Morse–Smale flow featuring a few stationary points and
heteroclinic connections;

the analysis of the extended flow allows us to obtain a full picture of the behavior of solutions
near the singularity, despite the flow fails to be fully regularizable (except in a few cases).



22 The variational approach to the periodic N–body problem

Settings: n point particles with masses m1, m2, . . .mn and positions x1, x2, . . . , xn ∈ Rd, with
d ≥ 2.

Homogeneous (Newton) potential of degree −α < 0 on the configuration space X : U(x) '∑
i<j

mimj

|xi − xj|α
.

Many results can be extended to logarithmic potentials:almost parallel N–vortex problem;

On collisions (xi = xj for some i 6= j) potential U = +∞.

T -periodic orbits: solutions of the Newton equations (such that ∀t : x(t + T ) = x(t) ∈ X ).

miẍi =
∂U

∂xi
.

Lagrangian: L(x, ẋ) = L = K + U =
∑
i

1

2
mi|ẋi|2 +

∑
i<j

mimj

|xi − xj|α
.

Action functional: A(x) =

∫ T

0

L(x(t), ẋ(t))dt.



23 Critical points of the action functional

Sobolev space of T -periodic trajectories: Λ = H1(T,X ).

Find critical points of action functional

A : Λ→ R ∪∞,

constrained on suitable linear subspaces Λ0 ⊂ Λ (natural constraints for A).

Main problems:

The action functional A is not coercive on Λ. The minimum needs not to be achieved.

We can seek critical point others than minimizers: e.g.

• Local minimizers

• Constrained minimizers

• Other type of critical points (mountain pass).

The action functional A does not satisfy the Palais Smale condition on Λ: sequences of almost–
critical points may diverge.

The potential U is singular on collisions, and thus miminizers or other critical points can a priori
be collision trajectories.



24 Symmetry groups and equivariant orbits

G finite group.

τ : G→ O(2) orthogonal representation of dimension 2 (on cyclic time T = R mod T ∼= S1).

ρ : G→ O(d) orthogonal representation (on the euclidean space Rd).

σ : G → Σn homomorphism on the symmetric group on n elements ( =⇒ G on the index set
n = {1, 2, . . . , n})
• G acts on time (translation and reversal) T via τ ;

• G acts on the configuration space X via ρ and σ:

∀i = 1 . . . n : (gx)i = ρ(g)xσ(g)−1(i).

Consider the linear subspace Λ0 = ΛG ⊂ Λ of periodic trajectories in Λ which
are equivariant with respect to the G-action:

∀g ∈ G : x(gt) = (gx)(t).

Consequences:

(1) ΛG is a natural constraint if mσ(g(i)) = mi, for all i and g ∈ G.

(2) Gain of coercivity: if XG is trivial we have (x ∈ Λ0, |x| → ∞ =⇒ A(x)→∞).



25 Cyclic and dihedral actions

Consider the normal subgroup ker τ C G and the quotient Ḡ = G/ ker τ . Since Ḡ acts effectively
on T, it is either a cyclic group or a dihedral group.

If the group Ḡ acts trivially on the orientation of T, then Ḡ is cyclic and we say that the action

of G on Λ is of cyclic type.

If the group Ḡ consists of a single reflection on T, then we say that action of G on Λ is of brake

type.

Otherwise, we say that the action of G on Λ is of dihedral type.
maximal 
isotropyisotropy

principal

fundamental
domain

If I = [0, 1] is the fundamental domain (for a dihedral type), then

G-equivariant trajectories correspond to paths x : I → X ker τ with

x(0) ∈ XH0 and x(1) ∈ XH1, where H0 and H1 are the maximal

isotropy subgroups of the boundary of I.

G-equivariance can be split into:

• proper boundary conditions on the fundamental domain;

•a time-independent constraint on the space of configurations.



26 A plethora of periodic trajectories

We can prove the existence of a multiplicity of periodic trajectories by a systematic use of equivariant
variational methods. This involves:

The classification of all the admissible symmetry groups.

The analysis of possible collisions for equivariant minimizers and the deter-
mination of those groups whose minimizers are free of collisions.

A further study of qualitative properties of equivariant minimizers to un-
derstand whether different classes of symmetric loops may share the same
minimizers.

Further possible developments

(1) Develop an equivariant Morse Theory specific for the N–body problem, taking into account of
all possible collisions.

(2) Fully understand the impact of collisions on the variational characterization (Morse index) of
periodic trajectories.



27 Absence of collision for locally minimal paths

As a matter of fact, solutions to the Newtonian n–body problem which are minimals for the action
are, very likely, free of any collision. This fact was observed by the construction of suitable local
variation arguments for the 2 and 3–body cases by Serra and Terracini (1992 and 1994). The 4–body
case was treated afterward by Dell’Antonio (non really rigorously) and then by A. Venturelli in his
PhD thesis. In general, the proof goes by the sake of the contradiction and involves the construction
of a suitable variation that lowers the action in presence of a collision. A recent breakthrough in
this direction is due of the neat idea, due to C. Marchal, of averaging over a family of variations
parameterized on a sphere. The method of averaged variations for Newtonian potentials has been
developed and exposed by Chenciner, and then extended to α–homogeneous potentials and various
constrained minimization problems by Ferrario and Terracini. This argument can be used in many
of the known cases to prove that minimizing trajectories are collisionless.

Problems:

Anisotropic and logarithmic potentials.

Study the contributions to the Morse index given by the possible collisions (Barutello, Secchi,
(2006).



28 The standard variation

Let G0 be the isotropy group at the collision time, then the blow–up procedure implies the existence
of q, a G0-equivariant minimizing homothetic collision trajectory.

The standard variation associated to δ and T is defined as

vδ(t) =


δ if 0 ≤ |t| ≤ T − |δ|
(T − t) δ|δ| if T − |δ| ≤ |t| ≤ T

0 if |t| ≥ T.

Our next goal is to find a G0-equivariant standard variation vδ such that the trajectory q + vδ

does not have a collision at t = 0 and

∆A :=

∫ +∞

−∞
[Lk(q + vδ)− Lk(q)]dt < 0.

Introduce the potential displacement function

S(ξ, δ) =

∫ +∞

0

(
1∣∣ξt2/(2+α) − δ

∣∣α − 1∣∣ξt2/(2+α)
∣∣α
)
dt

where ξ, δ ∈ R2.



Theorem: Let q = {q}i = {t2/(2+α)ξi}, i = 1, . . . , k be a parabolic collision trajectory and
vδ a G0-equivariant standard variation. Then, as δ → 0

∆A = 2|δ|1−α/2
∑
i<j
i,j∈k

mimjS(ξi − ξj,
δi − δj
|δ|

) + O(|δ|).

We observe that
S(λξ, µδ) = |λ|−1−α/2 |µ|1−α/2S(ξ, δ)

and hence the sign of S depends on the angle between ξ and δ. Let

Φ(ϑ) =

∫ +∞

0

1(
t

4
α+2 − 2 cosϑt

2
α+2 + 1

)α/2 − 1

t
2α
α+2

dt, α ∈ (0, 2)

Φ(θ) represents the potential differential needed for displacing the colliding particle from zero to eiθ.
Expanding, we find

Φ(ϑ) =
α(α + 2)

2

{
1

α− 2
β

(
α + 2

4
,
α + 2

4

)
+

1

α

+∞∑
k=1

(
−α/2

k

)
(−1)k2k−1(cosϑ)kβ

(
α

4
− 1

2
+
k

2
,
α

4
+

1

2
+
k

2

)}
.



29 Some properties of Φ

The value of Φ(θ) ranges from +∞ to some negative value, depending on α. However, thanks
to some harmonic analysis one can prove that suitable averages are always negative: the first
inequality is particularity useful for dealing with reflected triple collisions from the Lagrange central
configuration:

Φ(
2π

3
+ γ) + Φ(

2π

3
− γ) < 0, ∀γ ∈ [0, π/2].

A key remark was made by Christian Marchal: being the Newton potential a harmonic map av-
eraging it on a sphere results in a truncation in the interior. In fact, is not so much a matter of
harmonicity. A crucial estimate was proved in [FT] about the averages of Φ on circles:

For every α > 0, ξ ∈ R3 r {0} and for every circle S ⊂ Rd with center in 0,

S̃(ξ, S) =
1

|S|

∫
S
S(ξ, δ)dδ = |ξ|−1−α/2 |δ|1−α/2 1

2π

∫ 2π

0

Φ(θ)dθ < 0.

Consider ξ = xi − xj and δ ranging in a circle. Then we obtain the principle, a generalization of
the result announced in :
Chenciner, A., Action minimizing solutions of the Newtonian n–body problem: from homology to symmetry, August 2002, ICM,

Peking



30 Marchal’s Principle

It is more convenient (from the point of view of the integral of the potential on the time
line) to replace one of the point particles with a homogeneous circle of same mass and
fixed radius which is moving keeping its center in the position of the original particle

If the action ofG on T and X fulfills some conditions (computable) then (local) minimizers
of the action functional AG in ΛG ⊂ Λ do not have collisions.



31 The function S̃(ξ, S) as a hypergeometric combination

We can write S̃(ξ, S) in terms of hypergeometric functions as follows:

S̃(ξ, S) =
1

2π

∫ 2π

0

(∫ 1

0

+

∫ +∞

1

)[
1

|ξt2/(2+α) + δ|α
− 1

|t2/(2+α)ξ|α

]
dt dθ

We have

S̃(ξ, S) = 3F2

(
α/2, α/2, (2 + α)/4;

1, (6 + α)/4;
1

)
− 2 + α

2− α
+

2 + α

2− α

(
1− 3F2

(
α/2, α/2, (α− 2)/4;

1, (α + 2)/4;
1

))
.

They are nearly-poised (of the second kind) hypergeometric functions evaluated in 1. They are
balanced (i.e. Saalschützian) if and only if α = 1.

S̃(ξ, S)dt =
2 + α

4

∞∑
k=0

[(
−α/2

k

)2
1

k + α+2
4

(
(α/2 + k)2

(1 + k)2
+ 1

)]
− 2 + α

2− α
.



32 The rotating circle property

For a group H acting orthogonally on Rd, a circle S ⊂ Rd (with center in 0) is termed rotating
under H if S is invariant under H (that is, for every g ∈ H gS = S) and for every g ∈ H the
restriction g|S : S→ S is a rotation (the identity is meant as a rotation of angle 0).

Let i ∈ n be an index and H ⊂ G a subgroup. A circle S ⊂ Rd = V (with center in 0) is called
rotating for i under H if S is rotating under H and

S ⊂ V Hi ⊂ V = Rd,

where Hi ⊂ H denotes the isotropy subgroup of the index i in H relative to the action of H on the
index set n induced by restriction (that is, the isotropy Hi = {g ∈ H | gi = i}).

A group G acts with the rotating circle property if for every T-isotropy subgroup Gt ⊂ G
and for at least n− 1 indexes i ∈ n there exists in Rd a rotating circle S under Gt for i.

If the action has the rotating circle property, then for every g ∈ G the linear map 1 − g sends
the rotating circle into another circle (thus we can use the averaging trick).

In most of the known examples the property is fulfilled.

There are several infinite families with the rotating circle property.



33 Theorems with the RCP

Theorem: Consider a finite group K acting on Λ with the rotating circle property. Then a
minimizer of the K-equivariant fixed–ends (Bolza) problem is free of collisions.

Corollary: For every α > 0, minimizers of the fixed-ends (Bolza) problem are free of interior
collisions.

Corollary: If the action of G on Λ is of cyclic type and ker τ has the rotating circle property
then any local minimizer of AG in ΛG is collisionless.

Corollary: If the action of G on Λ is of cyclic type and ker τ = 1 is trivial then any local
minimizer of AG in ΛG is collisionless.

Theorem: Consider a finite group G acting on Λ so that every maximal T-isotropy
subgroup of G either has the rotating circle property or acts trivially on the index set
n. Then any local minimizer of AG yields a collision-free periodic solution of the Newton
equations for the n-body problem in Rd.
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