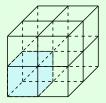
Playing with origami If interested don't hesitate to contact me!

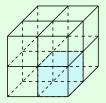
> Andrea Villa amorvincomni@gmail.com

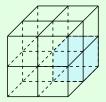
> > 28th April 2014

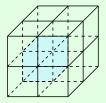
▲□ > ▲圖 > ▲目 > ▲目 > 目 のへの

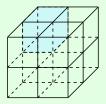


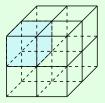


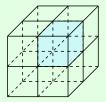


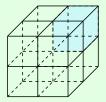


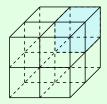










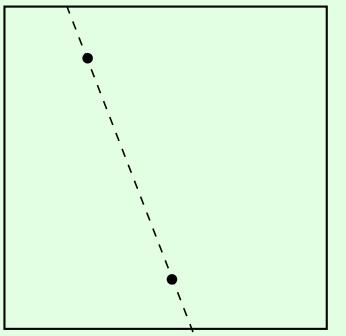


▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

Greek used straight-edge and compass, and they failed

ORIGAMI RULES:

(*L*1) Crease between two different points:

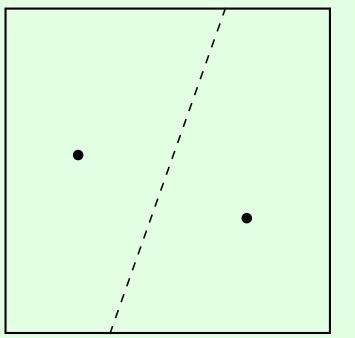


・ロト ・回ト ・ヨト ・ヨー うらぐ

ORIGAMI RULES:

(*L*1) Crease between two different points:

(L2) Perpendicular bisector of the segment



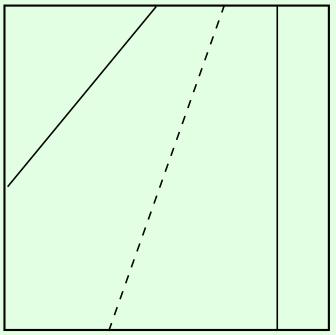
◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

ORIGAMI RULES:

(*L*1) Crease between two different points:

(L2) Perpendicular bisector of the segment

(L3) Angle bisector of two lines



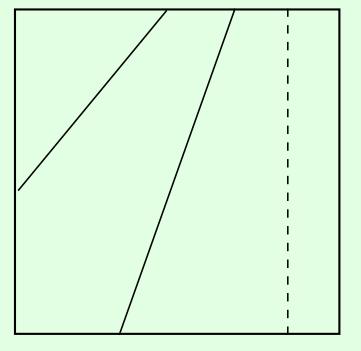
ORIGAMI RULES:

(*L*1) Crease between two different points:

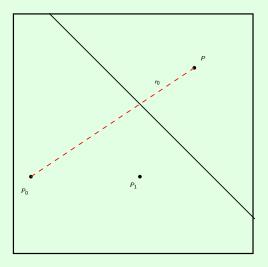
(L3) mirror reflection of a line

(L2) Perpendicular bisector of the segment

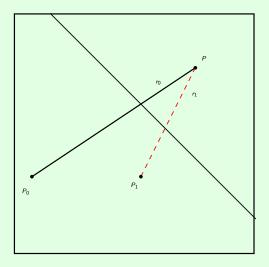
(L3) Angle bisector of two lines



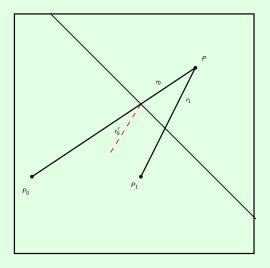
・ロト < 団ト < 三ト < 三ト < 回 < つへの



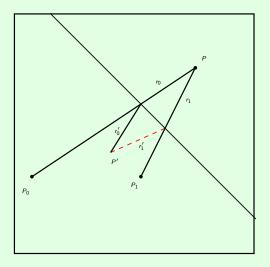
(L1) fold the crease r_0 between P_0 and P.



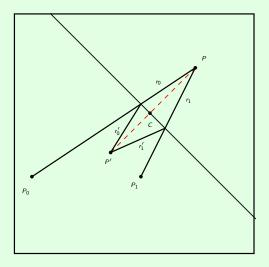
(L1) fold the crease r_1 between P_1 and P.



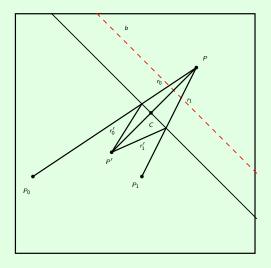
(L4) reflect the line r_0 about line r



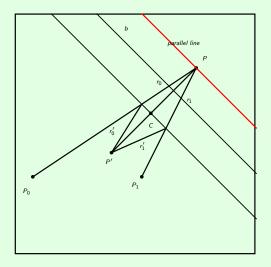
(L4) reflect the line r_1 about line r



(L1) fold the crease h between P' and P



(L2) fold the perpendicular bisector of the segment \overline{CP}



(L4) reflect the line r via the new line b.

$(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in P the perpendicular bisector of the line segment characterized the points is in L.
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in $\mathcal L$ the mirror reflection with respect one line is in $\mathcal L$.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

Definition (Origami numbers)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} . (\mathcal{P} is closed under intersection in \mathcal{L})
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in $\mathcal L$ the line equidistant from both of them is in $\mathcal L$.
- (5) Any two lines in $\mathcal L$ the mirror reflection with respect one line is in $\mathcal L$.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

くしゃ 本理 ティヨ ティヨ うらくの

Definition (Origami numbers)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} . (closure whit respect (L1) move)
- (3) Any two distinct points in P the perpendicular bisector of the line segment characterized the points is in L.
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in $\mathcal L$ the mirror reflection with respect one line is in $\mathcal L$.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

くしゃ 本理 ティヨ ティヨ うらくの

Definition (Origami numbers)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} . (closure whit respect (L2) move)
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in \mathcal{L} the mirror reflection with respect one line is in \mathcal{L} .

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

くしゃ 本理 ティヨ ティヨ うらくの

Definition (Origami numbers)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} . (closure whit respect (L3) move)
- (5) Any two lines in \mathcal{L} the mirror reflection with respect one line is in \mathcal{L} .

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

くしゃ 本理 ティヨ ティヨ うらくの

Definition (Origami numbers)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in L the mirror reflection with respect one line is in L. (closure whit respect (L4) move)

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

くしゃ 本理 ティヨ ティヨ うらくの

Definition (Origami numbers)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in \mathcal{L} the mirror reflection with respect one line is in \mathcal{L} .

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Definition (Origami numbers) The set of origami numbers is:

Definition (Origami Pair)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in \mathcal{L} the mirror reflection with respect one line is in \mathcal{L} .

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions. $\mathcal{P}_0 = \cap \{\mathcal{P} \mid (0,0), (1,0) \in \mathcal{P} \land \mathcal{P} \text{ is closed under origami construction}\}$

Definition (Origami numbers) The set of origami numbers is:

Definition (Origami Pair)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in \mathcal{L} the mirror reflection with respect one line is in \mathcal{L} .

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions. $\mathcal{P}_0 = \cap \{\mathcal{P} \mid (0,0), (1,0) \in \mathcal{P} \land \ \mathcal{P} \text{ is closed under origami construction} \}$

Definition (Origami numbers) The set of origami numbers is:

Definition (Origami Pair)

 $(\mathcal{P},\mathcal{L})$ is an origami pair if \mathcal{P} is a set of points and \mathcal{L} is a set of lines in \mathbb{R}^2 satisfying:

- (1) Any two non-parallel lines in \mathcal{L} intersect in a point of \mathcal{P} .
- (2) Any two distinct points in \mathcal{P} the line passing through them is in \mathcal{L} .
- (3) Any two distinct points in \mathcal{P} the perpendicular bisector of the line segment characterized the points is in \mathcal{L} .
- (4) Any two lines in \mathcal{L} the line equidistant from both of them is in \mathcal{L} .
- (5) Any two lines in \mathcal{L} the mirror reflection with respect one line is in \mathcal{L} .

Definition (Constructible points)

The set of origami constructible points is the smallest subset of \mathbb{R}^2 containing the points (0,0) and (1,0) that is closed under origami constructions. $\mathcal{P}_0 = \cap \{\mathcal{P} \mid (0,0), (1,0) \in \mathcal{P} \land \ \mathcal{P} \text{ is closed under origami construction} \}$

Definition (Origami numbers)

The set of origami numbers is: $\mathbb{F}_0 = \{ \alpha \in \mathbb{R} \mid \exists v_1, v_2 \in \mathcal{P}, \ |\alpha| = \operatorname{dist}(v_1, v_2) \}.$

The set of origami numbers is the smallest sub-field of \mathbb{R} closed under operation $x \mapsto \sqrt{1 + x^2}$.

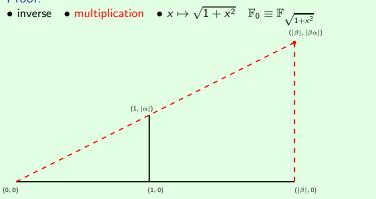
◆□ → ◆□ → ◆ □ → ◆ □ → ○ ● ○ ○ ○ ○

Proof.

• inverse • multiplication • $x \mapsto \sqrt{1 + x^2}$ $\mathbb{F}_0 \equiv \mathbb{F}_{\sqrt{1 + x^2}}$

The set of origami numbers is the smallest sub-field of \mathbb{R} closed under operation $x \mapsto \sqrt{1+x^2}$.

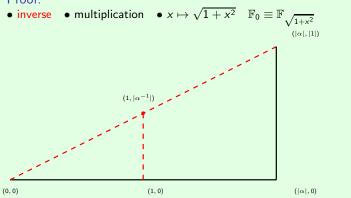
Proof.



▲□ → ▲□ → ▲□ → ▲□ → □ → のへ⊙

The set of origami numbers is the smallest sub-field of \mathbb{R} closed under operation $x \mapsto \sqrt{1+x^2}$.

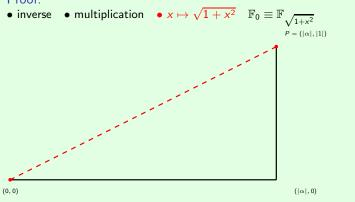
Proof.



▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

The set of origami numbers is the smallest sub-field of \mathbb{R} closed under operation $x \mapsto \sqrt{1 + x^2}$.

Proof.



▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

The set of origami numbers is the smallest sub-field of \mathbb{R} closed under operation $x \mapsto \sqrt{1 + x^2}$.

Proof.

• inverse • multiplication •
$$x \mapsto \sqrt{1 + x^2}$$
 $\mathbb{F}_0 \equiv \mathbb{F}_{\sqrt{1 + x^2}}$

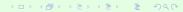
 $(x, y) \in \mathcal{P}_0 \iff x \text{ and } y \in \mathbb{F}_0$

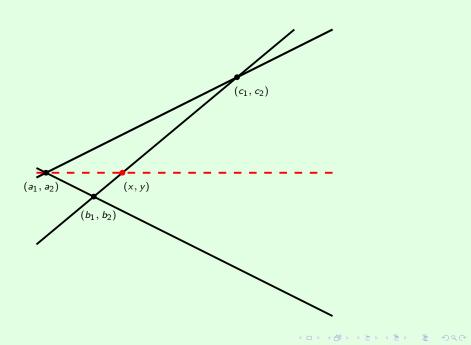
$$(a_1, a_2) = (0, 0)$$
$$(b_1, b_2) = (1, 0)$$

 $(x, y) \in \mathcal{P}_0 \iff x \text{ and } y \in \mathbb{F}_0$ Points can be added in four different ways:

$$(a_1, a_2) = (0, 0)$$
$$(b_1, b_2) = (1, 0)$$

$$(a_1, a_2) = (0, 0)$$
$$(b_1, b_2) = (1, 0)$$



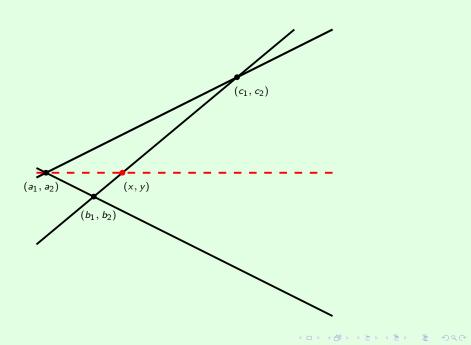


(a₁, a₂) = (0, 0)
(b₁, b₂) = (1, 0)

▲□ → ▲□ → ▲□ → ▲□ → □ → のへ⊙

(a₁, a₂) = (0, 0)
(b₁, b₂) = (1, 0)

▲□ → ▲□ → ▲□ → ▲□ → □ → のへ⊙



▲□ → ▲□ → ▲□ → ▲□ → □ → のへ⊙

 $\cot heta = rac{c_1}{c_2}$ and $\csc heta = \sqrt{1 + (rac{c_1}{c_2})^2}$

▲□→ ▲□→ ▲目→ ▲目→ 目 のへで

$$\cot \theta = \frac{c_1}{c_2}$$
 and $\csc \theta = \sqrt{1 + (\frac{c_1}{c_2})^2}$
 $m = \tan \theta/2 = \csc \theta - \cot \theta$

▲□→ ▲□→ ▲目→ ▲目→ 目 のへで

$$\cot \theta = \frac{c_1}{c_2} \text{ and } \csc \theta = \sqrt{1 + (\frac{c_1}{c_2})^2}$$

$$m = \tan \theta / 2 = \csc \theta - \cot \theta$$

x and y are in $\mathbb{F}_{\sqrt{1+x^2}}$

•
$$(a_1, a_2) = (0, 0)$$

• $(b_1, b_2) = (1, 0)$

$$\begin{array}{l} \cot \theta = \frac{c_1}{c_2} \text{ and } \csc \theta = \sqrt{1 + (\frac{c_1}{c_2})^2} \\ m = \tan \theta / 2 = \csc \theta - \cot \theta \\ x \text{ and } y \text{ are in } \mathbb{F}_{\sqrt{1+x^2}} \end{array}$$

Theorem

The set of origami numbers \mathbb{F}_0 is the smallest sub-field of \mathbb{R} closed under operation $x \mapsto \sqrt{1+x^2}$.

▲□ → ▲□ → ▲□ → ▲□ → □ → のへ⊙

•
$$(a_1, a_2) = (0, 0)$$

• $(b_1, b_2) = (1, 0)$

$$\cot \theta = \frac{c_1}{c_2} \text{ and } \csc \theta = \sqrt{1 + (\frac{c_1}{c_2})^2}$$

$$m = \tan \theta / 2 = \csc \theta - \cot \theta$$

x and y are in $\mathbb{F}_{\sqrt{1+x^2}}$

Theorem

The set of origami numbers \mathbb{F}_0 is the smallest sub-field of \mathbb{R} closed under operation $x\mapsto \sqrt{1+x^2}$. What about $\sqrt[3]{2}$?

▲□ → ▲□ → ▲□ → ▲□ → □ → のへ⊙

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- 2. Any algebraic number, α , is a root of an unique monic irreducible polynomial in $\mathbb{Q}[x]$.
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

(日) (同) (日) (日) (日)

Theorem The origami numbers ⊮₀ are totally real

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- 2. Any algebraic number, α , is a root of an unique monic irreducible polynomial in $\mathbb{Q}[x]$.
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

ション 人口 シ イヨン イヨン ヨー シック

Theorem The origami numbers ⊮₀ are totally real

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- 2. Any algebraic number, α , is a root of an unique monic irreducible polynomial in $\mathbb{Q}[x]$.
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

Theorem The origami numbers ⊮₀ are totally real

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

Theorem The origami numbers ⊮₀ are totally real

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem The origami numbers \mathbb{F}_0 are totally real.

Proof.

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem The origami numbers \mathbb{F}_0 are totally real.

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem

The origami numbers \mathbb{F}_0 are totally real.

Proof.

 $\mathsf{If}\ \alpha,\beta\in\mathbb{F}_{\mathit{TR}}\quad\Longrightarrow\quad -\alpha,\alpha^{-1},\sqrt{1+\alpha^2},\alpha+\beta,\alpha\cdot\beta\in\mathbb{F}_{\mathit{TR}}.$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1 + \alpha^2}, \alpha + \beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{-\alpha}(x) = \prod_{i=1} (x + \alpha_i),$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem

The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1 + \alpha^2}, \alpha + \beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{\alpha^{-1}}(x) = \left(\prod_i (x - \alpha_i^{-1})\right) \left(\prod_i \alpha_i\right),$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

Theorem The origami numbers \mathbb{F}_0 are totally real.

Proof.
If
$$\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1+\alpha^2}, \alpha+\beta, \alpha \cdot \beta \in \mathbb{F}_{TR}$$

 $q_{\sqrt{1+\alpha^2}}(x) = \prod_i (x^2 - 1 - \alpha_i^2),$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem

The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1 + \alpha^2}, \alpha + \beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{\alpha+\beta}(x) = \prod_i \prod_i (x - \alpha_i - \beta_j)$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

Theorem The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1+\alpha^2}, \alpha+\beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{\alpha\beta}(x) = \prod_i \prod_j (x - \alpha_i \beta_j)$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

くしゃ 本理 ティヨ ティヨ うらくの

Theorem The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1 + \alpha^2}, \alpha + \beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{\alpha\beta}(x) = \prod_i \prod_j (x - \alpha_i \beta_j) \in \mathbb{Q}[x]$

roots of $q_{\alpha\beta}(x)$ are real and $\alpha\beta$ is a root

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

Theorem The origami numbers \mathbb{F}_0 are

The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1+\alpha^2}, \alpha+\beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{\alpha\beta}(x) = \prod_i \prod_j (x - \alpha_i \beta_j) \in \mathbb{Q}[x]$

roots of $q_{\alpha\beta}(x)$ are real and $\alpha\beta$ is a root $p_{\alpha\beta}(x) \mid q_{\alpha\beta}(x) \implies \alpha\beta \in \mathbb{F}_{TR}.$

- 1. A number, α , is an algebraic number if it is a root of a polynomial with rational coefficients.
- Any algebraic number, α, is a root of an unique monic irreducible polynomial in Q[x].
- 3. The roots of the polynomial $p_{\alpha}(x)$ are the conjugates of α .
- 4. An algebraic number is totally real if all of its conjugates are real.

▲□ → ▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ●

Theorem

The origami numbers \mathbb{F}_0 are totally real.

Proof. If $\alpha, \beta \in \mathbb{F}_{TR} \implies -\alpha, \alpha^{-1}, \sqrt{1 + \alpha^2}, \alpha + \beta, \alpha \cdot \beta \in \mathbb{F}_{TR}.$ $q_{\alpha\beta}(x) = \prod_i \prod_j (x - \alpha_i \beta_j) \in \mathbb{Q}[x]$

roots of $q_{\alpha\beta}(x)$ are real and $\alpha\beta$ is a root $p_{\alpha\beta}(x) \mid q_{\alpha\beta}(x) \implies \alpha\beta \in \mathbb{F}_{TR}.$ \mathbb{F}_{TR} is a field closed under $x \mapsto \sqrt{1 + x^2} \iff \mathbb{F}_0 \subset \mathbb{F}_{TR}$

What about $\sqrt[3]{2}$?

What about $\sqrt[3]{2}$?

$$p_{\sqrt[3]{2}}(x) = x^3 - 2$$

What about $\sqrt[3]{2}$?

$$p_{\sqrt[3]{2}}(x) = x^3 - 2$$

$$\alpha = \sqrt[3]{2} \quad \alpha_1 = -\sqrt[3]{2}(\frac{1}{2} + \frac{\sqrt{3}}{2}i) \quad \alpha_2 = \sqrt[3]{2}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)$$

What about $\sqrt[3]{2}$?

$$p_{\sqrt[3]{2}}(x) = x^{3} - 2$$

$$\alpha = \sqrt[3]{2} \quad \alpha_{1} = -\sqrt[3]{2}(\frac{1}{2} + \frac{\sqrt{3}}{2}i) \quad \alpha_{2} = \sqrt[3]{2}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)$$

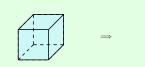
$$\sqrt[3]{2} \notin \mathbb{F}_{0}$$

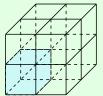
What about $\sqrt[3]{2}$?

$$p_{\sqrt[3]{2}}(x) = x^{3} - 2$$

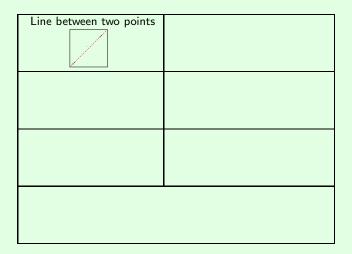
$$\alpha = \sqrt[3]{2} \quad \alpha_{1} = -\sqrt[3]{2}(\frac{1}{2} + \frac{\sqrt{3}}{2}i) \quad \alpha_{2} = \sqrt[3]{2}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)$$

$$\sqrt[3]{2} \notin \mathbb{F}_{0}$$

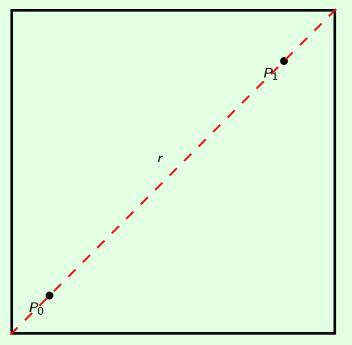




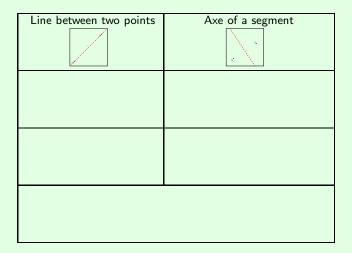
<□> <□> <□> <=> <=> <=> <=> <=> <<

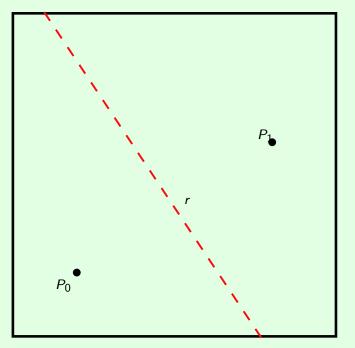


▲ロ → ▲園 → ▲ 国 → ▲ 国 → 今へで

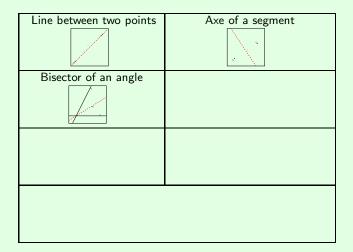


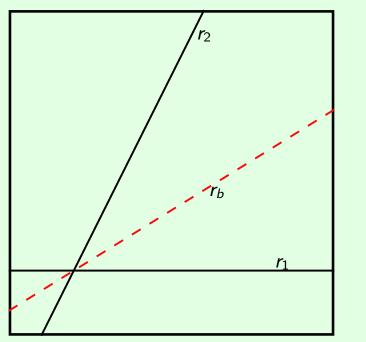
・ロット (四)・ (川)・ (日)・ (日)・



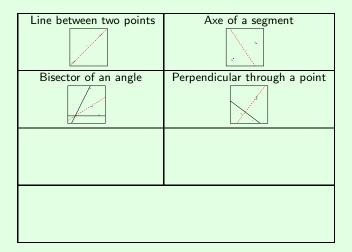


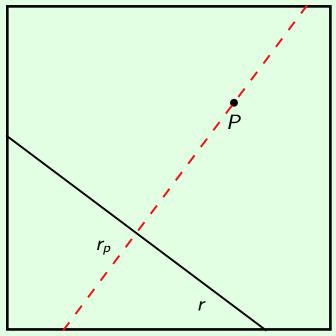
◆□→ ◆□→ ◆目→ ◆目→ ○□ ● ●●

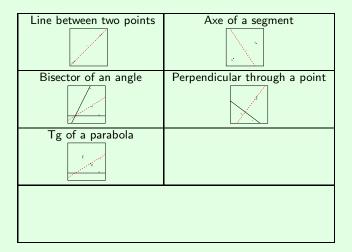


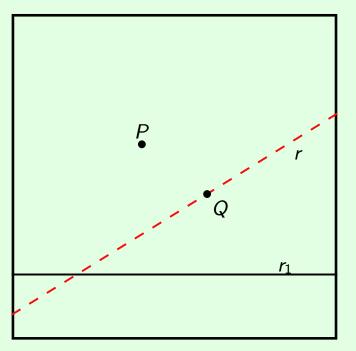


・ロト ・回ト ・ヨト ・ヨー うらぐ

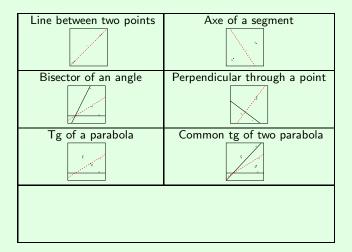


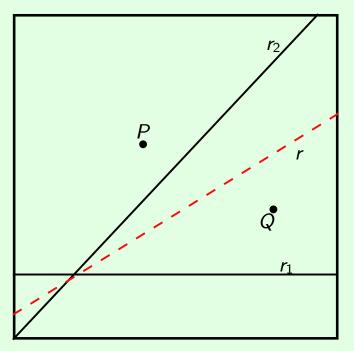


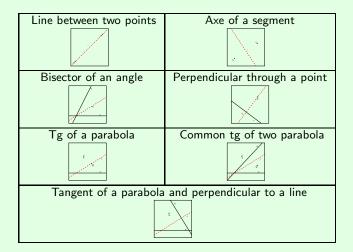


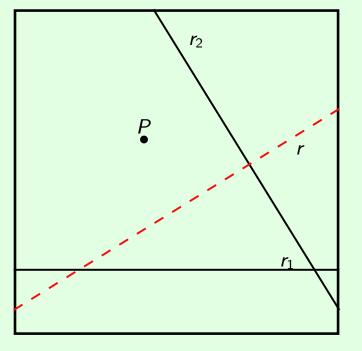


・ロット (四)・(田)・(田)・(日)・

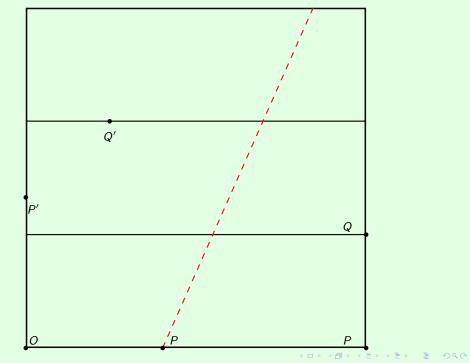


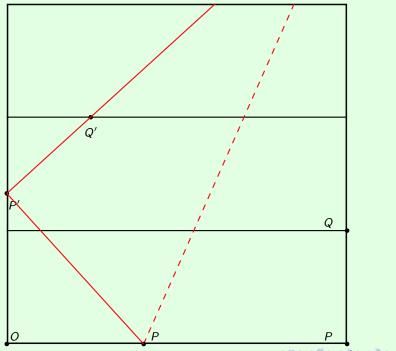






・ロト ・回ト ・ヨト ・ヨー うらぐ





< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\sqrt[3]{2}$ is NOT an origami number in the sense of Auckley-Cleveland.

• $\sqrt[3]{2}$ is an origami numberi in the sense of Hatori-Huzita.

- $\sqrt[3]{2}$ is NOT an origami number in the sense of Auckley-Cleveland.
- $\sqrt[3]{2}$ is an origami numberi in the sense of Hatori-Huzita.

References:

- D.Auckly, J.Cleveland, Totally real origami and impossible paper folding, American Mathematics Monthly 102 (1995)
- S. Yin, The mathematics of origami, 2009
- Centro diffusione origami:http://www.origami-cdo.it
- An artist Robert J. Lang: www.langorigami.com
- Me amorvincomni@gmail.com: I have a dropbox folder and under request I will share it.

- $\sqrt[3]{2}$ is NOT an origami number in the sense of Auckley-Cleveland.
- $\sqrt[3]{2}$ is an origami numberi in the sense of Hatori-Huzita.

References:

- D.Auckly, J.Cleveland, Totally real origami and impossible paper folding, American Mathematics Monthly 102 (1995)
- S. Yin, The mathematics of origami, 2009
- Centro diffusione origami:http://www.origami-cdo.it
- An artist Robert J. Lang: www.langorigami.com
- Me amorvincomni@gmail.com: I have a dropbox folder and under request I will share it.