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Greek used straight-edge and compass, and they failed
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A line parallel to a given line r through any point P.
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Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P . (P is closed
under intersection in L)

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(closure whit respect (L1) move)

(3) Any two distinct points in P the perpendicular bisector of the line segment
characterized the points is in L.

(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L. (closure whit respect (L2) move)

(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L. (closure

whit respect (L3) move)

(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

(closure whit respect (L4) move)

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.
P0 = ∩{P | (0, 0), (1, 0) ∈ P ∧ P is closed under origami construction}

Definition (Origami numbers)

The set of origami numbers is:
.



Definition (Origami Pair)

(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .

(2) Any two distinct points in P the line passing through them is in L.
(3) Any two distinct points in P the perpendicular bisector of the line segment

characterized the points is in L.
(4) Any two lines in L the line equidistant from both of them is in L.
(5) Any two lines in L the mirror reflection with respect one line is in L.

Definition (Constructible points)

The set of origami constructible points is the smallest subset of R2 containing
the points (0, 0) and (1, 0) that is closed under origami constructions.
P0 = ∩{P | (0, 0), (1, 0) ∈ P ∧ P is closed under origami construction}

Definition (Origami numbers)

The set of origami numbers is:
.
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(P ,L) is an origami pair if P is a set of points and L is a set of lines in R2

satisfying:

(1) Any two non-parallel lines in L intersect in a point of P .
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1. A number, α, is an algebraic number if it is a root of a polynomial with
rational coefficients.

2. Any algebraic number, α, is a root of an unique monic irreducible
polynomial in Q[x].

3. The roots of the polynomial pα(x) are the conjugates of α.

4. An algebraic number is totally real if all of its conjugates are real.

Theorem
The origami numbers F0 are totally real.

Proof.
If α, β ∈ FTR =⇒ − α, α−1,

√
1 + α2, α+ β, α · β ∈ FTR .
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